Noninvasive cardiac output estimation from peripheral pressure and pulse wave velocity: A model-based study

Vasiliki Bikia, Stamata Pagoulatou, Bram Trachet, Theodore G. Papaioannou, Nikolaos Stergiopulos

1Laboratory of Hemodynamics and Cardiovascular Technology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

2Biomedical Engineering Unit, 1st Department of Cardiology, "Hippokration" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
Cardiac output monitoring

Importance. CO monitoring is essential for patient management in the operating room and the ICU.

-> valuable information on global perfusion

Gold standard. Thermo-dilution using a pulmonary artery catheter set the basis for CO monitoring in clinical practice.

Figure 1. Pulmonary artery catheter positioning and corresponding pressure waveforms in mmHg. Source: www.derangedphysiology.com, The Pulmonary Artery Catheter
Noninvasive monitoring & Challenges

Pressure pulse analysis techniques (some have been commercialized)

- still based on invasive recordings or they require invasive calibration

Thoracic bioimpedance

- interference with electrocautery
- patient’s movement
- arrhythmias may affect its accuracy

Photoelectric plethysmography

- simplified assumptions that can be unreliable
- not adequately validated in human

Figure 2. Pulse contour CO monitoring method

Figure 3. PPG monitoring system
Motivation

Inter-subject variability requires theory-based CV models to be as individualized as possible (age, gender, hypertension, etc.).

Our approach:

To tune a 1-D arterial tree model to patient-specific standards using only noninvasive, easily-obtained peripheral measurement data.
Mathematical model of the cardiovascular system

- 103 arterial segments
- 1-D model of the vasculature: solves 1-D Navier-Stokes equations
- Local area compliance: $C_A(\text{pressure, location})$ [Langewouters et al.]
- 3WK coupled to the terminal sites
- Aortic flow input

Figure 4. Schematic representation of the arterial tree, adopted from Reymond et al.

G. J. Langewouters, Visco-elasticity of the Human Aorta in Vitro in Relation to Pressure and Age. 1982.
Two-layer optimization algorithm to tune the 1-D model to patient-specific standards
In vivo validation

- **In vivo anonymized data** (Mobil-O-Graph – derived brachial pressure, cf-PWV) from n=20 subjects (Age : 23 – 70) by Papaioannou et al.

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central aortic SBP (mmHg)</td>
<td>83</td>
<td>154</td>
<td>124</td>
<td>14.78</td>
</tr>
<tr>
<td>Peripheral SBP (mmHg)</td>
<td>96</td>
<td>156</td>
<td>120.20</td>
<td>16.31</td>
</tr>
<tr>
<td>Peripheral DBP (mmHg)</td>
<td>31</td>
<td>95</td>
<td>76.05</td>
<td>8.87</td>
</tr>
<tr>
<td>Peripheral PP (mmHg)</td>
<td>36</td>
<td>61</td>
<td>44.15</td>
<td>10.38</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>72.67</td>
<td>115.33</td>
<td>90.77</td>
<td>10.83</td>
</tr>
<tr>
<td>Mean aortic flow (L/min)</td>
<td>3</td>
<td>6.20</td>
<td>4.34</td>
<td>14.69</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>51</td>
<td>98</td>
<td>70.90</td>
<td>10.04</td>
</tr>
<tr>
<td>cf-PWV (m/s)</td>
<td>5.25</td>
<td>11.25</td>
<td>6.89</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Table 1. Descriptive characteristics of the in vivo measurement data

Results

Figure 6. Scatter plot between the “real” CO values from the in vivo data and the model-derived CO estimates (solid line represents equality).

Figure 7. Scatter plot between the “real” cSBP values from the in vivo data and the model-derived cSBP estimates (solid line represents equality).

RMSE = 4.36 mmHg

RMSE = 0.38 L/min
Discussion

• The successful tuning of a 1-D model of the vasculature can be achieved by using noninvasive, easily-obtained peripheral measurement data.

• However, tuning is successful when we take into account additional characteristics of the subject (age, hypertension). Uniform changes in compliance don’t apply to hypertensive and the elderly.

• Further validation against a large in vivo database will allow us to conclude that our method can potentially be employed for noninvasive monitoring in the clinical setting.
Thank you very much!