Peripheral blood flow regulation in response to sympathetic stimulation in individuals with Down syndrome

Thessa Hilgenkamp, PhD

University of Illinois at Chicago Integrative Physiology Laboratory

Disclosures

This work has been supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIH K99/R00 1 K99 HD092606-01).

Down syndrome

Genotype and phenotype

- Trisomy 21
- Most common genetic syndrome
 - 1 in every 700 newborns
- Intellectual disability
- Co-occuring diseases, i.e. congenital heart disease, Alzheimer's disease, infections, hypothyroid disease, hearing problems, sleep apnea¹

Down syndrome

Cardiovascular risk

- More obesity²
- Lower physical activity³
- Lower fitness⁵
- But they struggle with exercise: fatigue, demotivated, 'lazy'?
- → Has led to investigations into underlying causes of low work capacity

Down syndrome & ANS Working model (*Fernhall et al. 2013*)

Governance gone wrong Subject of investigation

Working hypothesis: Impaired ability to adequately shunt blood flow to working muscle

- To investigate the effects of a mild sympathoexcitatory stimulus (-20 mmHg LBNP) on brachial blood flow in individuals with and without DS.
- We hypothesized:

Individuals with DS would demonstrate **less vasoconstriction** and **smaller reductions** in brachial blood flow than the control group.

- Inclusion: 18-40 years of age, male, non-athletic, in general good health
- Exclusion: heart disease, high blood pressure, high fasting glucose, contra-indications exercise

	DS (n=10)	Control (n=11)	
Age (years)	24 ±3	24 ±3	
BMI (kg/m²)	29.5 ± 4.0	25.1 ± 5.0 *	
VO _{2peak} (ml/kg/min)	28.2 ± 4.5	42.6 ± 6.0 **	
HRpeak (bpm)	170 ± 13	195 ± 10 **	

- Controlled: no caffeine, alcohol and exercise for at least 12 hours and a minimum 4 hour fast
- Continuous measurement of HR and BP
 - 3-lead electrocardiogram (ECG), finger plethysmography (Finometer)
- Doppler Ultrasound

LBNP

Blood Flow

-Lower body negative pressure (LBNP)

- ≤60° probe insonation angle⁷
- Forearm blood flow (FBF): velocity*πr²*60
- Forearm vascular conductance (FVC): FBF/MAP*100

7. Thijssen et al. 2011

Results

Mean arterial pressure

* = Effect LBNP response (Condition)

Results

Diameter and velocity

Significant interaction effect: 0.6 40-§ Mean velocity (cm/sec) 30 Diameter (cm) 0.4-20 0.2-10-0.0 0 DS DS Control Control **Baseline** LBNP

§ = Effect DS vs Control (Group) + = difference Baseline vs LBNP

Results: interaction effects

Blood flow and vascular conductance

Significant interaction effect

‡ = difference DS vs control

+ = difference Baseline vs LBNP

Results

Controls

UIC

Down Syndrome

 During LBNP:
 ↓ velocity and FBF (potentially FVC)

As expected

During LBNP: no changes, complete lack of, or opposite response

Different from expected

- 1. Impaired vasoconstriction to redistribute blood flow in a nonexercise task
- 2. Smaller diameters in Down syndrome = structural difference
 → suggests a chronic adaptation to:
 - 1. Less demand
 - 2. Less supply

Line of inquiry: potential causes

Less demand?

- Muscle mass
- Local mechanisms: ability to vasodilate
 - DS-specific oxidative stress \rightarrow vascular dysfunction?
 - Dynamic hand grip without and with LBNP
- Muscle physiology: ability to use oxygen
 - Mitochondrial dysfunction \rightarrow less oxygen uptake
 - Measuring microvasculature and oxygenation: NIRS

Less supply?

- Cardiac output during maximal exercise test
 - Ped-off ultrasound probe

- Young males with DS exhibit reduced peripheral regulation of blood flow, indicating a blunted sympathetic control of blood flow
- First time: autonomic dysfunction in individuals with DS is not only impacting systemic control of heart rate and blood pressure, but also peripheral blood flow.
- Further research into **underlying mechanisms to connect to the specific cardiovascular profile in DS** and extrapolate findings to other patient populations.

- Questions?
- <u>thessa@uic.edu</u>
- Many thanks to the entire IPL team, especially Sangouk Wee!

