Age-induced increase in the energy transmitted towards the cerebral circulation as a contributor to impaired brain function

Stamatia Pagoulatou¹, Jonathan Mynard², Vasiliki Bikia¹, Julio Chirinos³, Nikolaos Stergiopulos¹, Patrick Segers⁴

¹Laboratory Of Hemodynamics And Cardiovascular Technology (Lhtc), EPFL, Lausanne, Switzerland. ²Heart Research, Murdoch Children's Research Institute, Parkville, Australia. ³University Of Pennsylvania Perelman School Of Medicine And Hospital Of The University Of Pennsylvania, Philadelphia, Pa, Usa. ⁴Ibitech-biommeda, Universiteit Gent, Gent, Belgium.
Cognition and Age

Continuous decline in cognitive skills with age

Increasingly aged population → cognitive impairment becomes a major health issue

Associated with high aortic stiffness (c-f PWV)
 - independent predictor of cardiovascular and cerebrovascular diseases

What is the pathophysiological mechanism linking high aortic stiffness and cognitive impairment?
Effect of ageing on arterial stiffness

Non-uniform stiffening of arterial tree:
• Proximal aorta becomes stiff
• Periphery is not significantly affected

Impedance mismatch reduced

Forward pressure wave amplitude increase
What is the pathophysiological mechanism linking high aortic stiffness and cognitive impairment?

Prevalent theory

Transmission of excessive pulsatile energy towards the brain because of decrease in impedance mismatch

Tested in vivo by Mitchell et al.

• Quantified carotid pulsatility index: (Flow Pulse Amplitude) / (Mean Flow)

• Correlation with brain damage

Figure. Prevalence of subcortical infarcts and pulsatility in the carotid (Mitchell et al.)
Major challenges

- Inherent difficulty in investigating wave transmission \textit{in vivo}
- Need of simultaneous measurements of blood flow and pressure in cerebral arteries
- Impossible to employ wave analysis techniques

Mathematical modeling could be a valuable tool to investigate the pathophysiological link
Previous work from our laboratory

1-D model of the systemic circulation

Continuity
\[\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0 \]

Momentum
\[\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\int_A u^2 dA \right) = -\frac{A dP}{\rho dA} - 2\pi R \frac{\mu}{\rho} \frac{\partial u}{\partial r} \bigg|_{r=R} \]

Constitutive equation
\[A(t) = A^c(P(t)) + A^v(t) \]

→ Previously validated in vivo

Adapted to incorporate effects of ageing
- Non-uniform stiffening of arterial tree
- Increase in LV contractility

Figure. Pressure evolution predicted by the ageing model vs clinical data (Pagoulatou et al.)
Our Approach

Investigate the age-induced evolution of energy transmission towards the cerebral circulation using the ageing model and novel wave power analysis.
Isolated pressure and flow curves of ageing model at the **Ascending Aorta (AA)** and the 4 feeding vessels of cerebral circulation:

- **Right & Left Internal Carotid Artery (ICR & ICL)**
- **Right & Left Vertebral Artery (VR & VL)**

Methods & Results

1. Employed the wave power analysis by Mynard et al.
 - Calculated wave power:

 \[d\pi = dPdQ \]

 - Hydraulic power:

 \[\Pi = \Pi_P + \Pi_Q = PQ + \frac{\rho Q^3}{2A^2} \]

 - Separated hydraulic power into forward, backward and interaction terms:

 \[\Pi = (\Pi_{P+} + \Pi_{Q+}) + (\Pi_{P-} + \Pi_{Q-}) + \Pi_X \]

Total Hydraulic Energy

Integration of power curves, after subtraction of the offset (energy potential):

\[\text{Total HE} = (\text{Forward HE} - \text{offset}) + (\text{Backward HE} - \text{offset}) + (\text{Interaction term}) \]
How much of this energy is due to the early systolic forward compression wave (FCW)?
Why the early systolic FCW?
✓ Cancel out the effect of reflections travelling up from the distal aorta towards the brain

How to calculate HE carried by FCW?
✓ Isolated the timing of the FCW
✓ Integrated the hydraulic power curve over this timing

Timing of the FCW in the AA

- Forward Hydraulic Power
- dP^+
- dQ^+
- dP^+ vs. dQ^+
- dP^+ vs. dQ^+ vs. time (sec)
Hydraulic Energy (Joule) carried by FCW

... In relative terms
Take home message

Results support original hypothesis

Age-related arterial stiffening leads to an increase in the transmission of hydraulic energy carried by early systolic forward wave towards brain, which might compromise its function and structure.
Laboratory of Hemodynamics and Cardiovascular Technology
Prof. Nikos Stergiopulos
EPFL, Lausanne, Switzerland

stamatia.pagoulatou@epfl.ch