Associations between indicators of cardiovascular disease and pulse wave analysis and velocity: a comparison of devices

<u>Ellins EA¹</u>, Lennon LT², Papacosta O², Wannamethee SG², Whincup PH³ & Halcox JP¹

Swansea University
University College London
St George's University of London

Background

- Pulse wave analysis (PWA) indices and pulse wave velocity (PWV) provide important information about arterial function
- Associated with cardiovascular outcomes
- Number of devices available to assess these measures

Background

Sphygmocor -applanation tonometry

Vicorder –cuff based

 To investigate if there were differences in the associations between markers of cardiovascular disease (CVD) and PWA variables and PWV as assessed by the Sphygmocor & Vicorder

British Regional Heart Study (BRHS)

- Prospective study of middle-aged men
- Recruited from GP practices in 24 British towns 1978-1980
- To determine factors responsible for variation in CHD, hypertension & stroke in Great Britain
- To determine causes of these conditions to provide rational basis for recommendations towards their prevention

BRHS

Vascular assessment

- Pulse wave velocity and pulse wave analysis (assessed by Vicorder and Sphygmocor)
- Carotid intima media thickness, carotid distensibility and presence of plaque (ultrasound)
- Ankle brachial pressure index (Vicorder)
- Blood pressure

Other measures

- Left ventricular hypertrophy (LVH) ECG (Minnesota Code)
- NT-proBNP
- Blood tests including lipid profile and glucose
- Anthropometric measures
- History of previous CVD
- Smoking

Analysis

- Only participants with data from both devices included
- Assessed associations between AP, Alx, CBP & PWV with LVH, NT-ProBNP & IMT
- Linear and logistic regression(LVH) with adjustments for cardiovascular risk factors such as blood pressure, obesity & glucose

	PWA n=1373	PWV n=1122
Age (yrs)	78.2 ± 4.6	/8.0 ± 4.4
Systolic blood pressure (mmHg)	148 ± 19	148 ± 19
Diastolic blood pressure (mmHg)	77 ± 11	77 ± 11
Total cholesterol (mmol/L)	4.67 ± 1.03	4.71 ± 1.02
LDL (mmol/L)	2.64 ± 0.93	2.68 ± 0.94
HDL (mmol/L)	1.46 ± 0.42	1.48 ± 0.42
Triglycerides (mmol/L)	1.30 ± 0.66	1.28 ± 0.67
Glucose (mmol/L)	5.74 ± 1.47	5.71 ± 1.42
BMI (kg/m²)	27.08 ± 3.85	26.54 ± 3.31
Smoking (Y)	44 (3.2%)	34 (3%)
IMT (mm)	0.80 ± 0.16	0.80 ± 0.16
NT-proBNP (pg/ml)	279 ± 743	228 ± 394
Left ventricular hypertrophy (Y)	105 (7.6%)	84 (7.5%)

	Sphygmocor	Vicorder	р
AP (mmHg)	17 ± 9	13 ± 5	<0.001
Alx (%)	29 ± 10	21 ± 6	<0.001
CBP (mmHg)	131 ± 19	139 ± 17	<0.001
PWV (m/s)	10.3 ± 2.6	10.05 ± 1.67	<0.001

		Sphygmocor					
LVH	OR	95% CI	р				
АР	1.038	1.008 - 1.063	0.011				
Alx	1.028	1.003 - 1.05 3	0.03				
CBP*	1.016	1.005 - 1.027	0.004				
PWV†	0.871	0.779 - 0.973	0.015				

Analyses adjusted for age, systolic blood pressure, total

cholesterol, HDL, glucose, BMI & smoking

*systolic blood pressure not included

Includes heart rate

	Sphygmocor		Vicorder			
LVH	OR	95% CI	р	OR	95% CI	р
AP	1.038	1.008 - 1.063	0.011	1.014	0.969 - 1.06	0.55
Alx	1.028	1.003 - 1.05 <mark>3</mark>	0.03	1.01	0.973 - 1.048	0.60
CBP*	1.016	1.005 - 1.027	0.004	1.009	0.997 - 1.022	0.15
PWV†	0.871	0.779 - 0.973	0.015	0.912	0.778 - 1.07	0.26

Analyses adjusted for age, systolic blood pressure, total

cholesterol, HDL, glucose, BMI & smoking

*systolic blood pressure not included

† includes heart rate

	Sphygmocor		Vicorder			
NT-proBNP	В	95% CI	р	В	95% CI	р
АР	0.014	0.004 - 0.024	0.005	0.040	0.025 - 0.05	5 <0.001
Alx	0.003	-0.005 - 0.010	0.46	0.029	0.017 - 0.04	1 <0.001
CBP\$	0.002	-0.001 - 0.006	0.19	0.002	-0.002 - 0.00	06 0.32
PWV≠	-0.007	-0.040 - 0.025	0.66	0.010	-0.042 - 0.06	52 0.70

Analyses adjusted for age, systolic blood pressure, total

cholesterol, HDL, glucose, BMI, previous MI, eGFR & smoking

\$ systolic blood pressure not included

≠Includes heart rate

	Sphygmocor			Vicorder			
ІМТ	В	95% CI	р	_	В	95% CI	р
АР	0.000	-0.001 - 0.001	0.92	_	0.001	-0.001 - 0.003	0.22
Alx	-0.001	-0.002 - 0.000	0.12		0.000	-0.001 - 0.002	0.98
CBP*	0.000	0.000 - 0.001	0.15		0.001	0.000 - 0.001	0.044
PWV [†]	-0.001	-0.005 - 0.003	0.55		-0.003	-0.010 - 0.003	0.30

Analyses adjusted for age, systolic blood pressure, total cholesterol, HDL,

glucose, BMI & smoking

*systolic blood pressure not included

+ includes heart rate

Conclusions

- Same measures from different devices were predictors of different indicators of CVD
- Sphygmocor derived arterial stiffness indices were a better predictor of LVH than Vicorder

measures

Acknowledgements

- BRHS team
- Participants of the BRHS
- British Heart Foundation

