
Glucose Is the Most Important Target for CV Prevention in Diabetes

FRANCESCO GIORGINO

DIPARTIMENTO DELL'EMERGENZA E DEI TRAPIANTI DI ORGANI SEZIONE DI MEDICINA INTERNA, ENDOCRINOLOGIA, ANDROLOGIA E MALATTIE METABOLICHE

An Increased HbA_{1c} Was Associated with Increased Risk of 1-Year Survival Outcomes

Data are adjusted hazard ratios ± 95% confidence intervals CVD, cardiovascular disease; HF, heart failure Dauriz M, et al. *Diabetes Care* 2017; doi: 10.2337/dc16-2016 [Epub ahead of print]

The Three Megatrials on IGC in T2DM

- Action in Diabetes and Vascular Disease–Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) n=11,140 embedded BP trial
- Veterans Affairs Diabetes Trial (VADT) n=1,791 intensive BP and lipid control in both arms

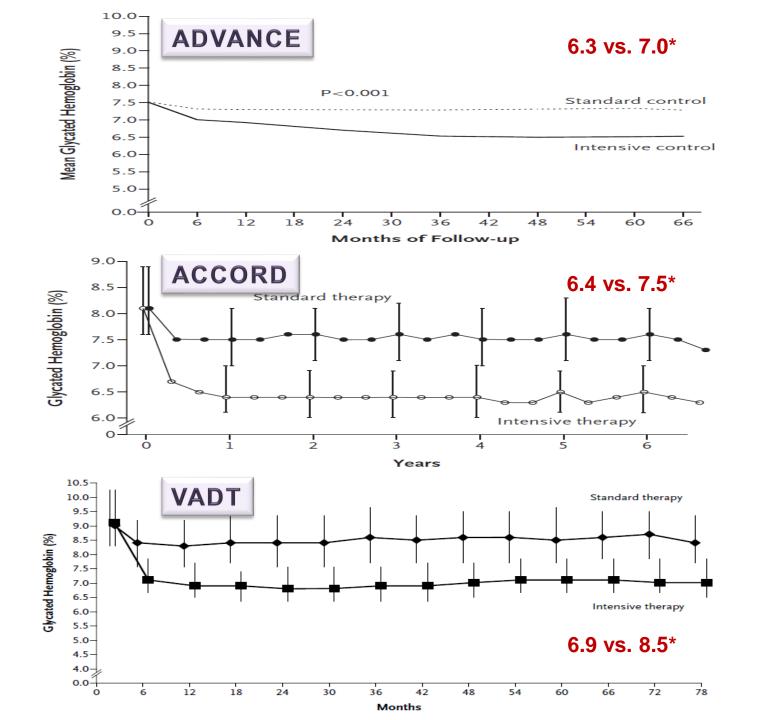
 Action to Control Cardiovascular Risk in Diabetes (ACCORD) n=10,251 embedded BP and lipid trials

ACCORD

IGC: individualised therapy at discretion of treating physician; target HbA_{1c} \leq 6.0% as early as possible; early and aggressive use of insulin, including multiple injections; monthly visits for the first 6 months, then every 2 months

SGC: visits every 4 months

ADVANCE


IGC: Gliclazide MR
<u>Unrestricted additional</u>
<u>therapy</u> to achieve target
HbA1c≤6.5%
SGC: SU other than
Gliclazide MR
Unrestricted additional
therapy according to
standard guidelines

 All other treatment at discretion of treating physician

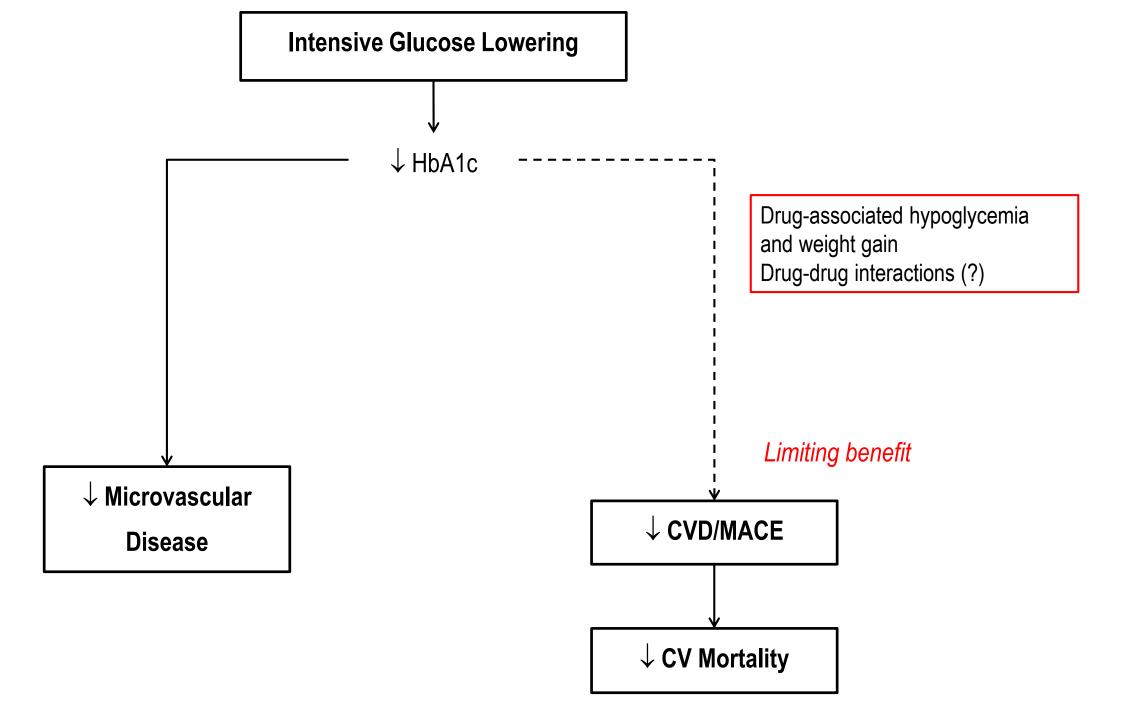
VADT

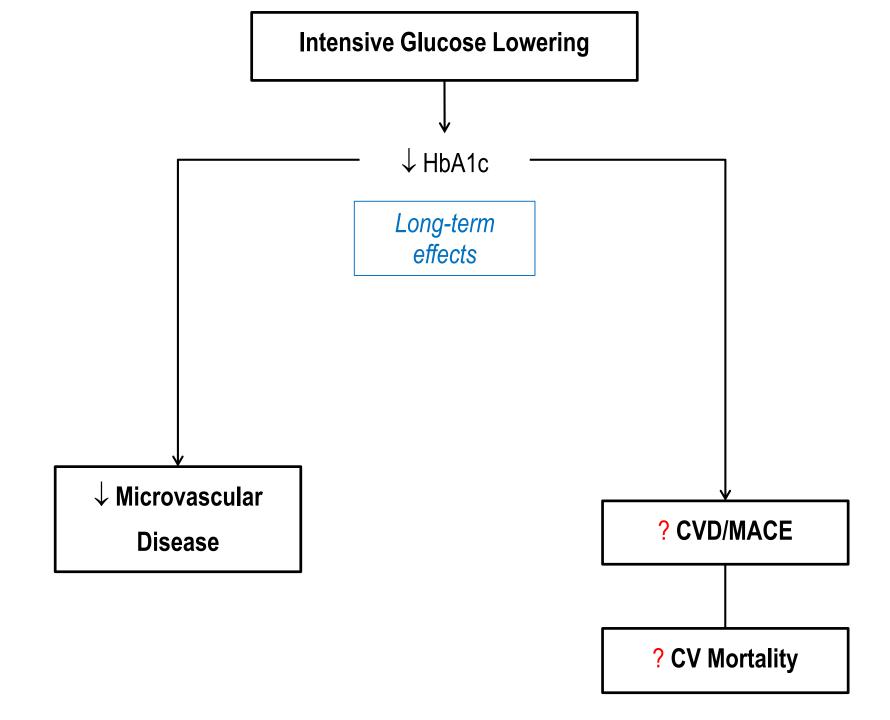
- Metformin/Glimepiride

 → Rosiglitazone
 → Insulin
 IGC: max. doses, insulin
 if HbA_{1c} ≥6%
 SGC: half-max. doses,
 insulin if HbA_{1c} ≥9%
- Other CV risk factors treated identically
- ASA and statin to all patients (unless contraindicated)

The Three Megatrials on IGC in T2DM

- Action in Diabetes and Vascular Disease–Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE)
 n=11,140 embedded BP trial
 MI, Stroke, CV death RR reduction 6% (-6% to +16%); p=0.32

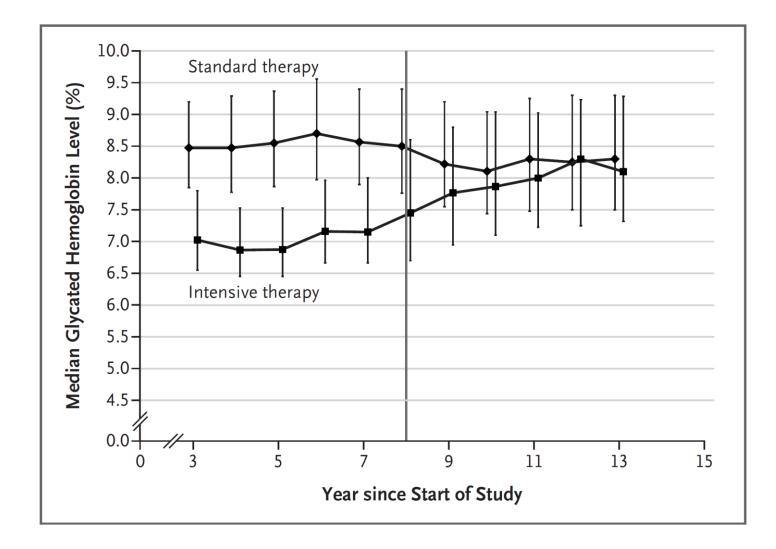

cerebrovascular, or peripheral vascular disease, inoperable CAD, and amputation) RR reduction **12%** (–26% to +5%); **p=0.14**


(0.78-1.04) (-22% to +4%); **p=0.16**

 Action to Control Cardiovascular Risk in Diabetes (ACCORD) n=10,251
 MI, Stroke, CV death RR reduction 10%

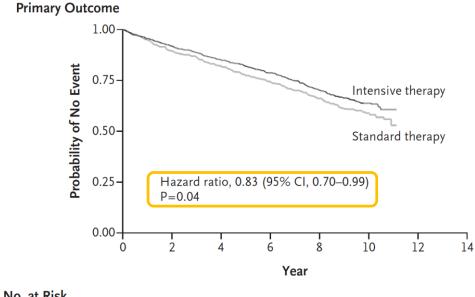
	Number of ev (annual incide			Hazard ratio (95% CI) intensive vs standard	p valu
	Intensive	Standard			
Fatal or non-fatal MI					
Treatment transition	220 (1.15%)	267 (1.41%)		0.80 (0.67–0.96)	0.015
Full follow-up	304 (1.25%)	355 (1.46%)		0.84 (0.72–0.97)	0.021
Fatal MI					
Treatment transition	20 (0.10%)	12 (0.06%)		1.63 (0.80–3.32)	0.178
Full follow-up	24 (0.09%)	14 (0.05%)		1.68 (0.87–3.24)	0.121
Non-fatal MI					
Treatment transition	207 (1.08%)	257 (1·35%)		0.78 (0.65–0.94)	0.009
Full follow-up	287 (1.18%)	344 (1.42%)		0.81(0.70–0.95)	0.010
Coronary revascularisation					
Treatment transition	469 (2·54%)	517 (2.81%)	-∎-	0.89 (0.78-1.01)	0.063
Full follow-up	565 (2.41%)	658 (2.81%)		0.84 (0.75–0.94)	0.003
Unstable angina					
Treatment transition	168 (0.88%)	199 (1·04%)		0.83 (0.68-1.02)	0.074
Full follow-up	202 (0.83%)	245 (1.00%)		0.81(0.67-0.97)	0.023
Any MI/unstable angina/coronary	revascularisation				
Treatment transition	601 (3.31%)	662 (3.66%)		0.89 (0.79–0.99)	0.031
Full follow-up	764 (3·32%)	855 (3·74%)		0.87 (0.79–0.96)	0.006
Any MI/unstable angina					
Treatment transition	333 (1.77%)	408 (2·19%)		0.79 (0.69–0.92)	0.002
Full follow-up	454 (1·90%)	535 (2·25%)		0.83 (0.73–0.94)	0.003
New-onset angina					
Treatment transition	48 (0.25%)	66 (0.34%)		0.73 (0.50–1.05)	0.092
Full follow-up	63 (0.25%)	82 (0.33%)	_	0.76 (0.55–1.06)	0.110
			0.5 1.0	2.0 4.0	
				2.0 4.0	
		Favo	ours intensive therapy Favours star	ndard therapy	

Gerstein HC et al, The Lancet 2014

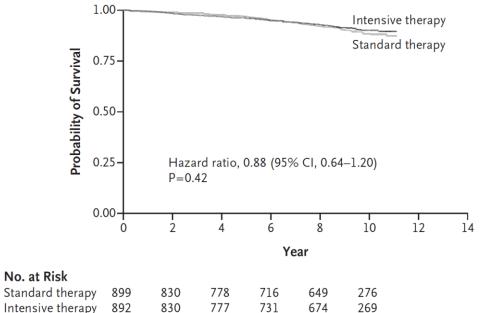

UKPDS: Legacy Effect of Earlier Glucose Control

After median 8.5 years post-trial follow-up **Aggregate Endpoint** 1997 2007 Any diabetes related endpoint 12% 9% RRR: 0.040 *P*: 0.029 Microvascular disease 25% 24% RRR: *P*: 0.0099 0.001 Myocardial infarction 16% 15% RRR: 0.014 0.052 *P*: All-cause mortality 6% 13% RRR: 0.44 0.007 *P*:

RRR = Relative Risk Reduction, P = Log Rank

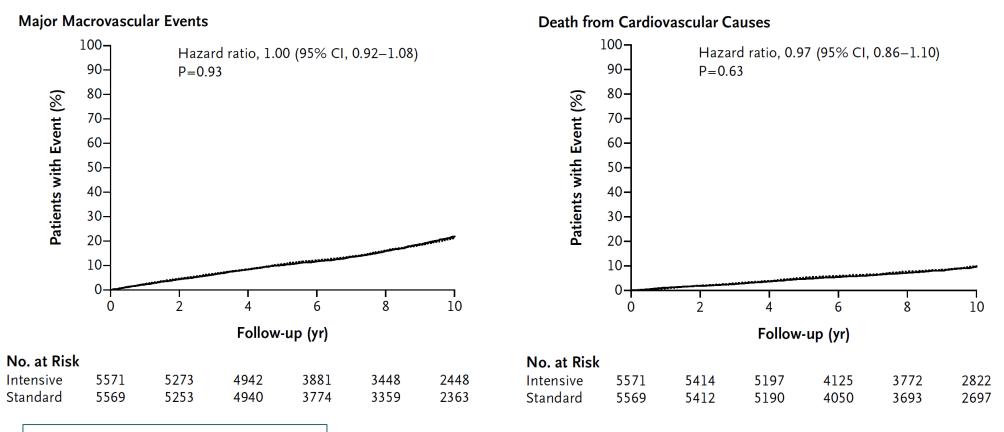

Holman RR et al, New Engl J Med, 2008

VADT Follow-up: Changes in Median HbA1c

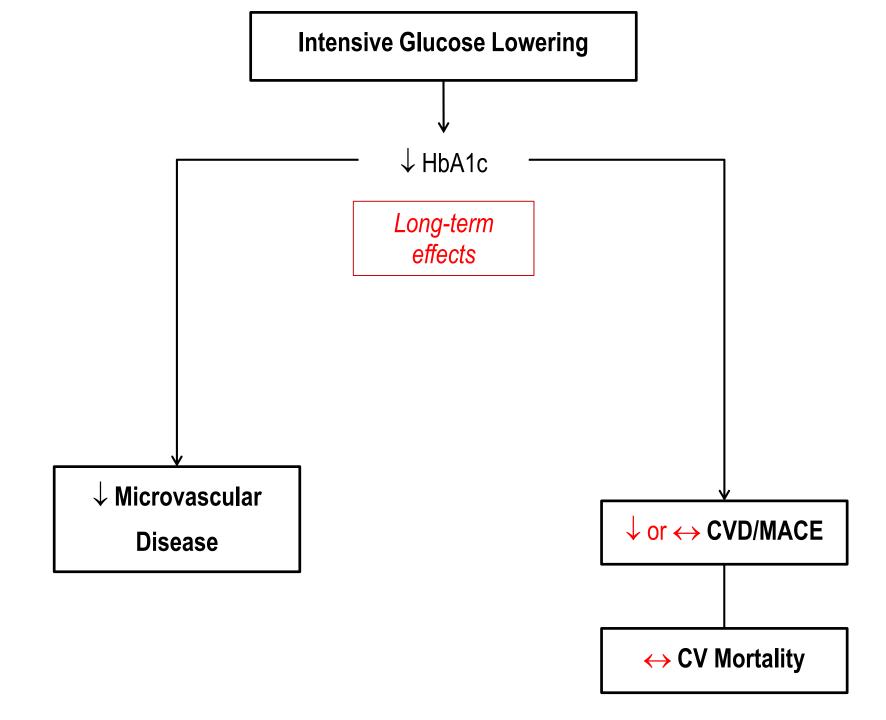

Hayward RA, et al., N Engl J Med. 2015; 372:2197-2206.

VADT Follow-up: Probability Curves for Time to the First Major CV Event and for CV Mortality

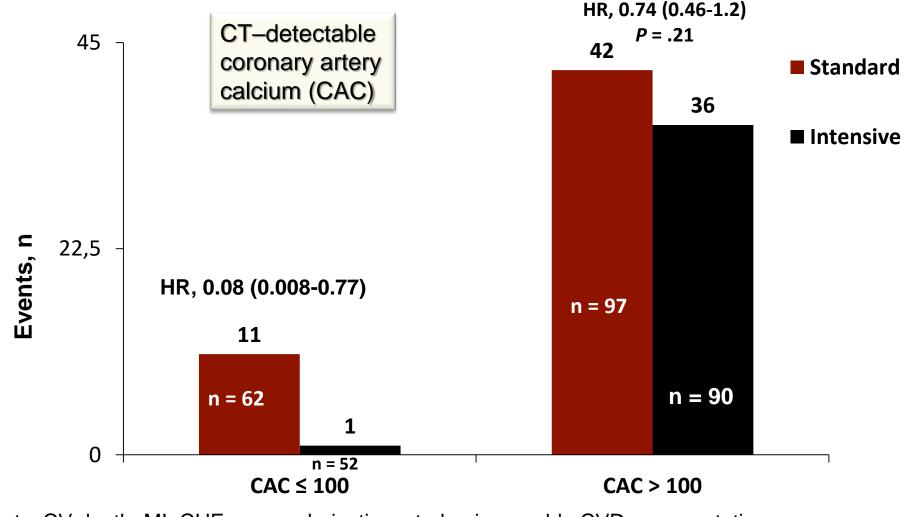
INO. at KISK						
Standard therapy	899	732	626	475	352	126
Intensive therapy	892	745	650	511	395	154


In-trial HbA1c Δ : 1.5% Trial duration: 5.4 yrs Follow-up duration: 9.8 yrs

Death from Cardiovascular Causes

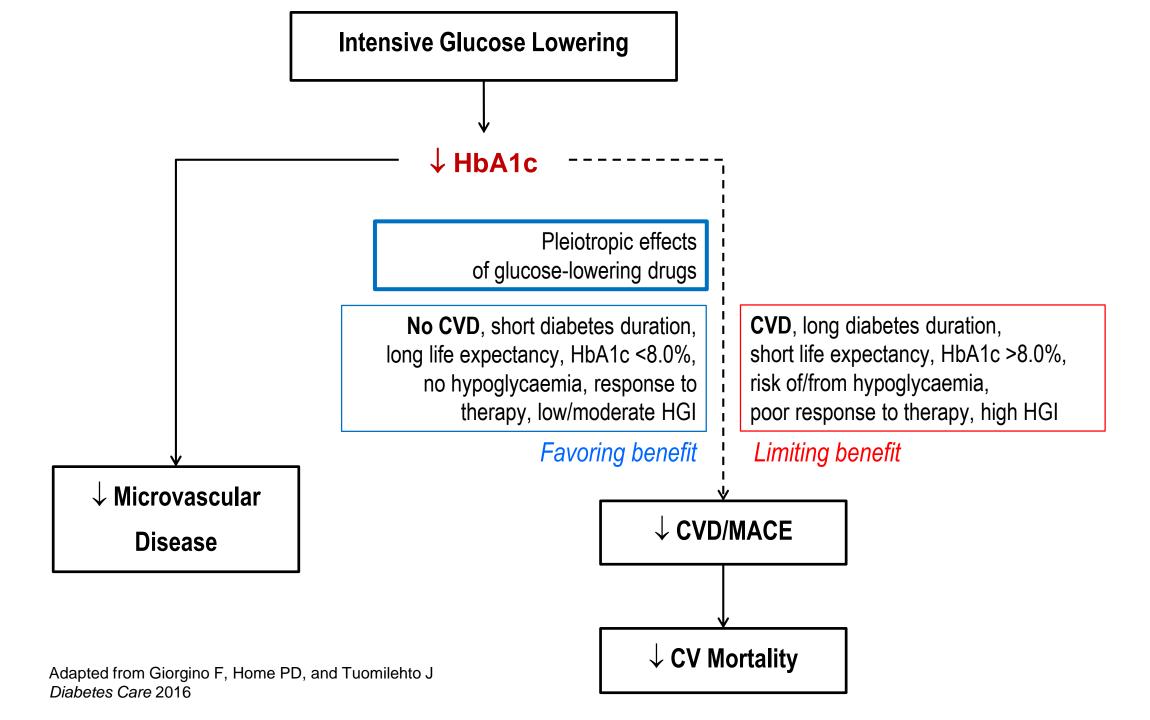

Hayward RA, et al., N Engl J Med. 2015; 372:2197-2206.

ADVANCE Follow-up: Cumulative Incidence of Events, According to Glucose-Control Study Group



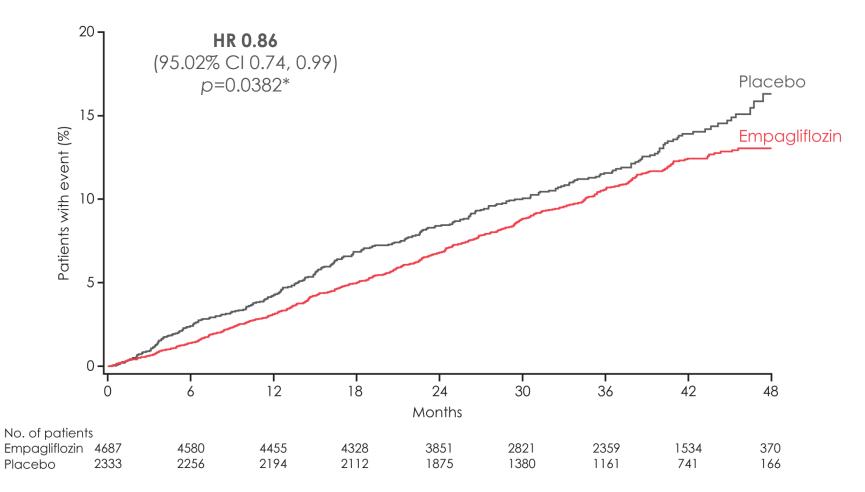
In-trial HbA1c Δ : 0.7% Trial duration: 5.0 yrs Follow-up duration: 4.9 yrs

Zoungas S, et al., N Engl J Med. 2014; 371:1392-1406.



VADT: Intensive Treatment Reduces CVD Events in Cases With Lower Calcified Coronary Atherosclerosis

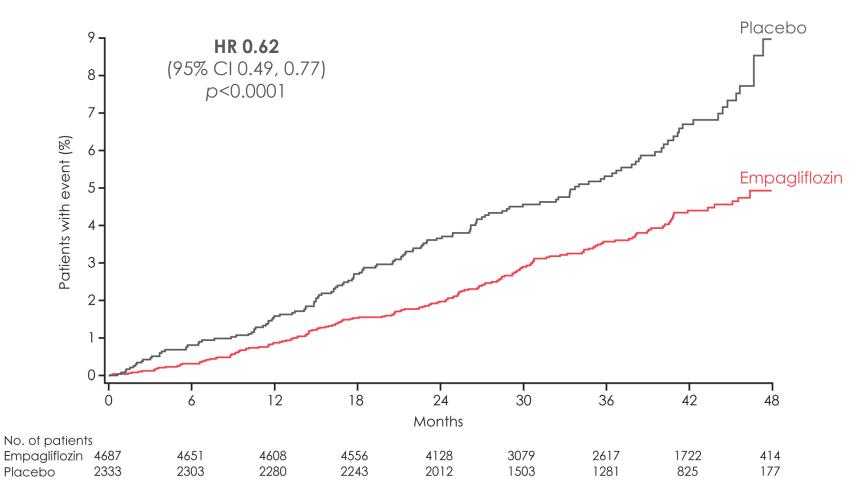
*Events: CV death, MI, CHF, revascularization, stroke, inoperable CVD, or amputation.


Reaven PD, et al. Diabetes. 2009;58:2642-2648.

CVOT with SGLT2i and GLP-1 RA

EMPA-REG ¹	
 Established cardiovascular disease (prior myocardial infarction, coronary artery disease, stroke, unstable angina or occlusive peripheral arterial disease) 	Empagliflozin (SGLT2i) vs. usual care
LEADER ²	
 ≥50 years with pre-existing cardiovascular disease, cerebrovascular disease, vascular disease, or renal or heart failure ≥60 years with cardiovascular risk factors 	Liraglutide (GLP-1 RA) vs. usual care
SUSTAIN-6 ³	
 ≥50 years with pre-existing cardiovascular disease 	Semaglutide
 ≥60 years with pre-cardiovascular disease 	(GLP-1 RA) vs. usual care
inman B. et al. N Engl J Med 2015:373:2217–2128: 2. Marso SP. et al. N Engl J Med 2016:375:311–322: 3. Marso SP. et al. N Engl J Med 2016:375:1834–184	14

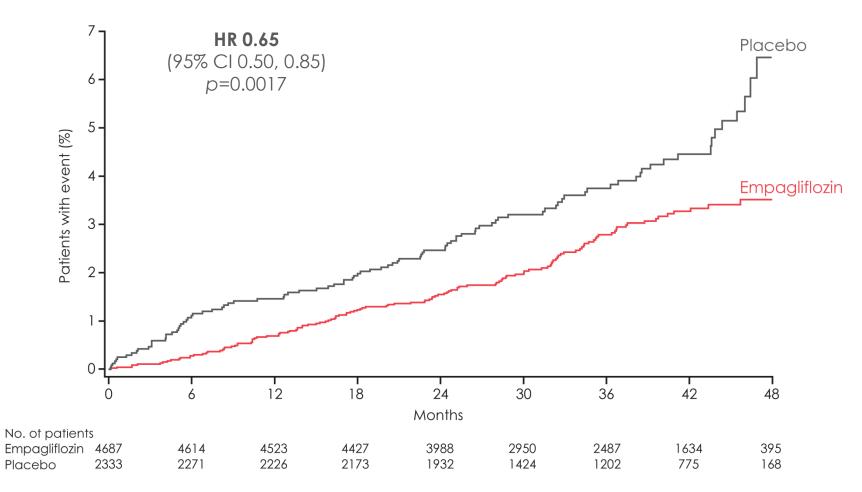
Primary Outcome: 3-Point MACE



Cumulative incidence function. MACE, Major Adverse Cardiovascular Event; HR, hazard ratio. * Two-sided tests for superiority were conducted (statistical significance was indicated if p≤0.0498)

Zinman B, et al. N Engl J Med 2015;373:2217-2128.

CV Death



Cumulative incidence function. HR, hazard ratio

Zinman B, et al. N Engl J Med 2015;373:2217–2128.

Hospitalisation for Heart Failure

Cumulative incidence function. HR, hazard ratio

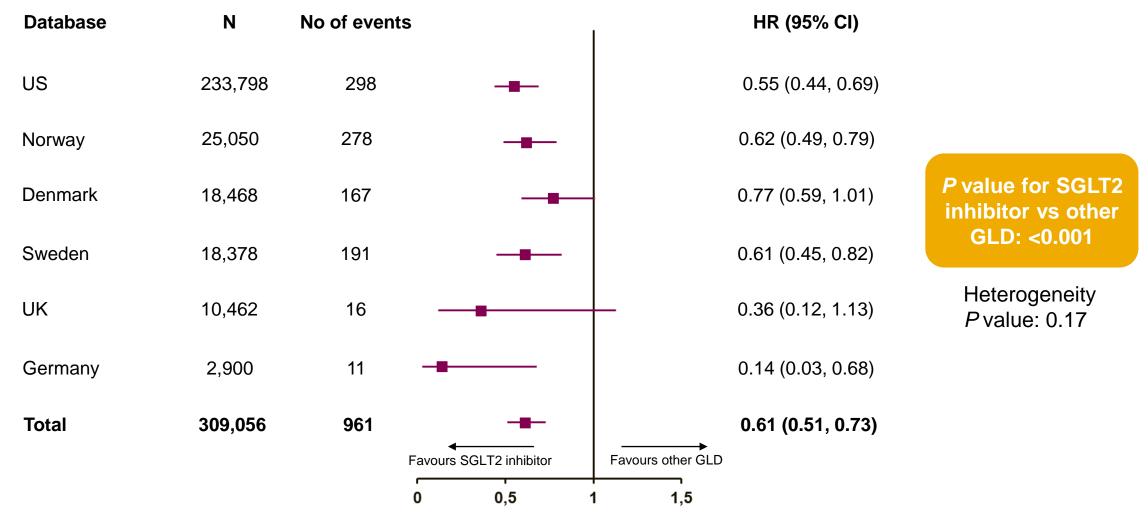
Zinman B, et al. N Engl J Med 2015;373:2217-2128.

Key Outcomes in the CANVAS Program and EMPA-REG OUTCOME

			Hazaı	r <mark>d rat</mark> i	o (95	% CI)	
CV death, nonfatal myocardial infarct or nonfatal stroke	tion,				1	AS Progr -REG OU	
CV death			H-0-	-	H		
Nonfatal myocardial infarction							
Nonfatal stroke				⊢			
Hospitalization for heart failure					 		
CV death or hospitalization for heart	failure		ہ 1		 		
All-cause mortality				, 			
Progression to macroalbuminuria*				-4	 		
Renal composite*		-		-	 		
*CANVAS Program endpoints comparable with	0.25		0.5	1	.0	2.0	
EMPA-REG OUTCOME.			Favors S	GLT2i	Favo	ors Place	ebo
nan Bet al. N Engl J Med. 2015 ;373(22):2117-2128. ner K et al. N Engl J Med. 2016;375(4):323-334.							rogram

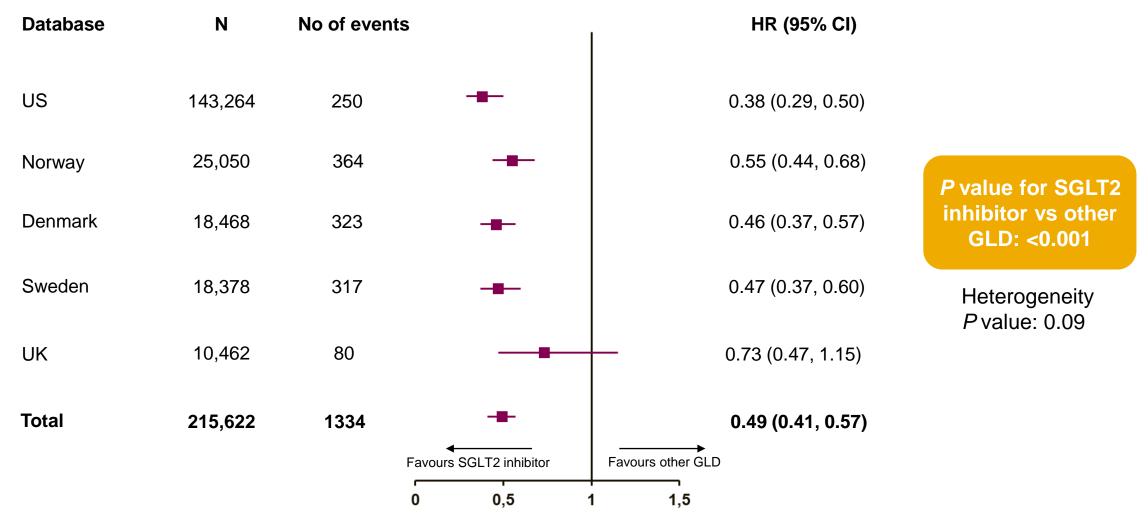
Canagliflozin (SGLT2i) vs. usual care

Empagliflozin (SGLT2i) vs. usual care

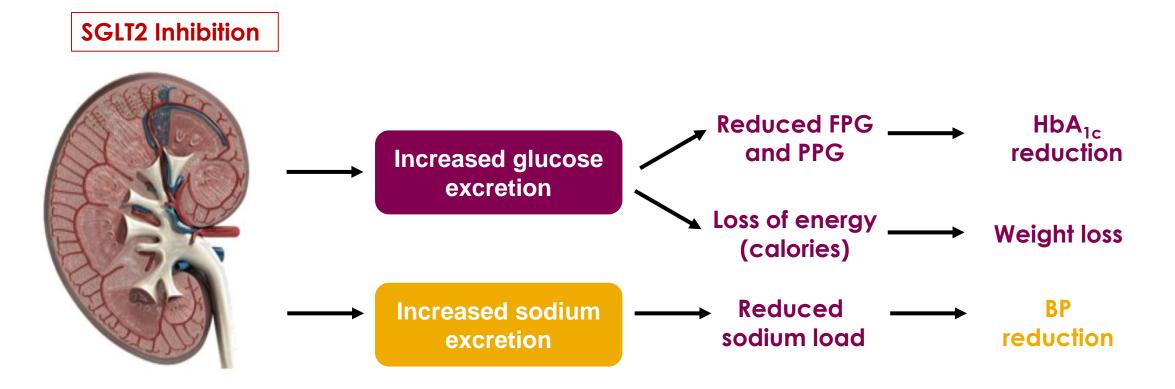

CVD-REAL: Baseline Characteristics

Empa 9.7%		SGLT2 inhibitors N=154,523	Other glucose-lowering drugs N=154,523
A	Cana	57.0 (9.9)	57.0 (10.1)
W 36.6%	53% 53.6%	68,419 (44.3)	68,770 (44.5)
E	00.070	20,043 (13.0)	20,302 (13.1)
		3,792 (2.5)	3,882 (2.5)
Unstable angi	na	2,529 (1.6)	2,568 (1.7)
Heart failure		4,714 (3.1)	4,759 (3.1)
Atrial fibrillatio	n	5,632 (3.6)	5,698 (3.7)
Stroke		6,347 (4.1)	6,394 (4.1)
Peripheral arterial disease		Peripheral arterial disease 5,239 (3.4)	
Microvascular dise	ular disease 42,214 (27.3)		42,221 (27.3)
CKD		KD 3,920 (2.5)	

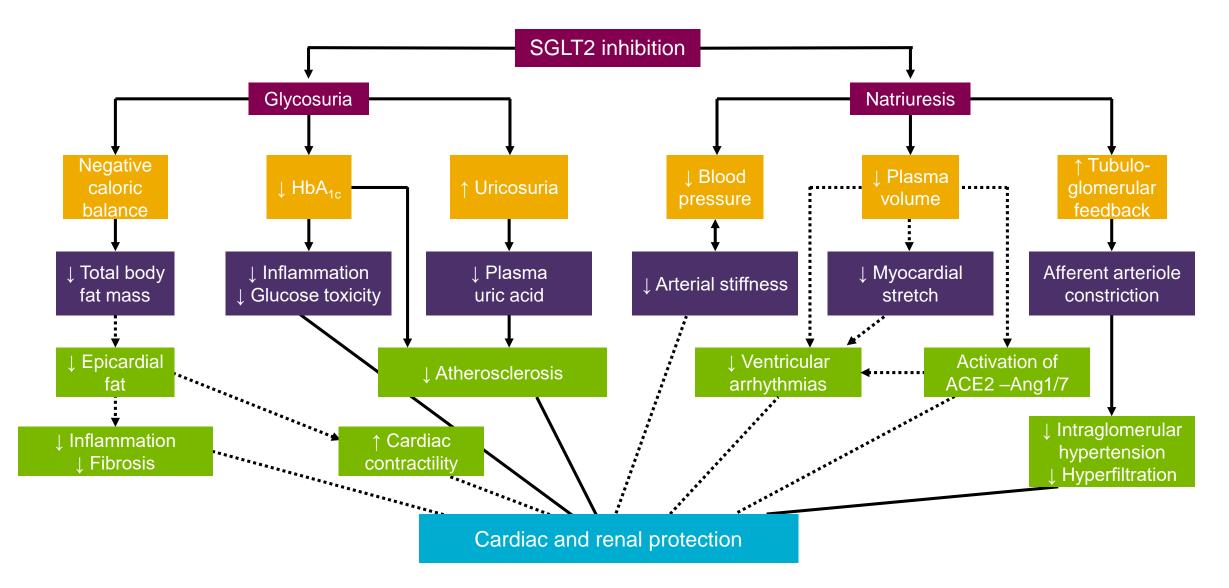
Data are presented as n (%) unless otherwise stated


^a Myocardial infarction, unstable angina, stroke, heart failure, transient ischaemic attack, coronary revascularisation or occlusive peripheral artery disease CKD, chronic kidney disease; CV, cardiovascular; hHF, hospitalisation for heart failure; SD, standard deviation; SGLT2. sodium–glucose co-transporter 2 Kosiborod M, et al. Circulation, 2017

CVD-REAL: Treatment with SGLT2 Inhibitors was Associated with Reductions in hHF vs Other GLDs

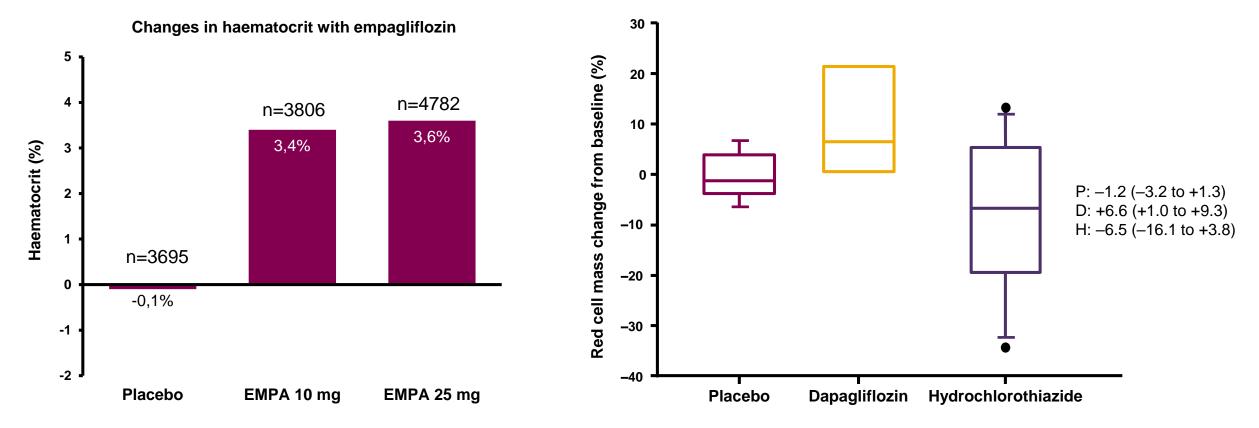

CI, confidence interval; GLD, glucose-lowering drug; hHF, hospitalisation for heart failure; HR, hazard ratio; SGLT2, sodium–glucose co-transporter 2 Kosiborod M, et al. Circulation, 2017

CVD-REAL: Treatment with SGLT2 Inhibitors was Associated with Reductions in All-cause Death vs Other GLDs

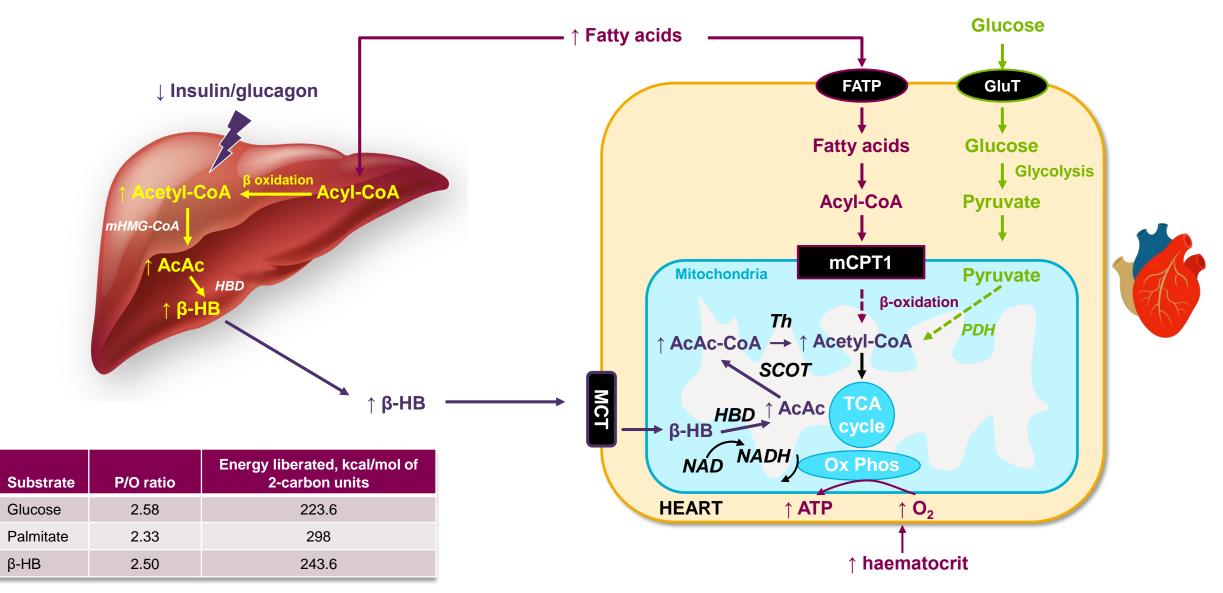

CI, confidence interval; GLD, glucose-lowering drug; HR, hazard ratio; SGLT2, sodium–glucose co-transporter 2 Kosiborod M, et al. Circulation, 2017

Some Expected Clinical Effects of SGLT2 Inhibition Based on the Mode of Action

BP, blood pressure; FPG, fasting plasma glucose; HbA_{1c}, glycated haemoglobin; PPG, post-prandial glucose; SGLT2, sodium–glucose co-transporter 2 Abdul-Ghani MA, et al. *Encocr Rev* 2011;32:515–531


SGLT2 Inhibitors Reduce CVD Risk in a Multifaceted Manner

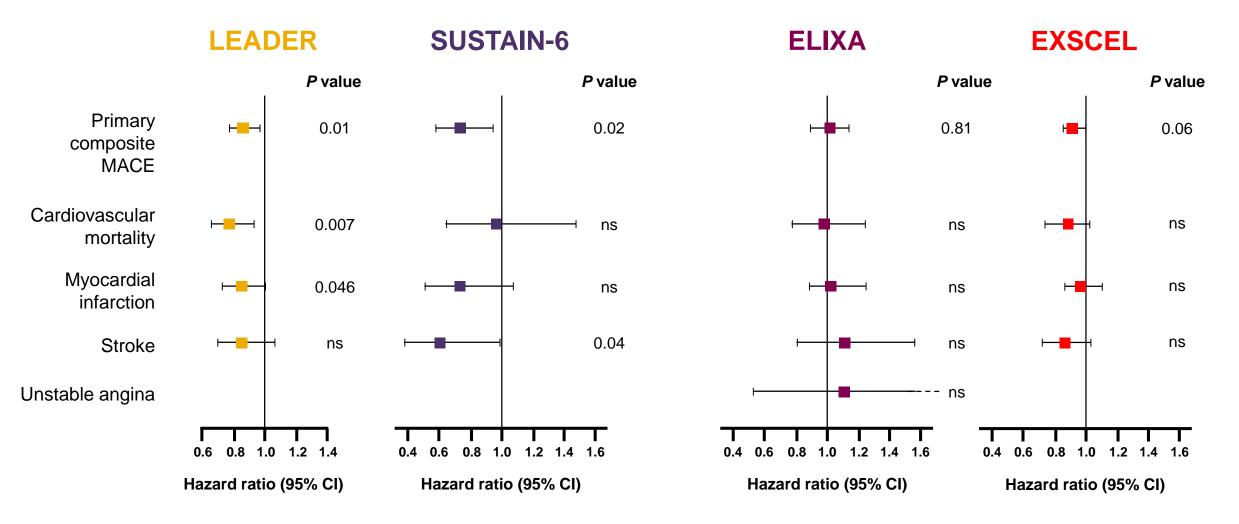
ACE2, angiotensin-converting enzyme-2; Ang 1/7, angiotensin 1/7; CVD, cardiovascular disease; HbA_{1c}, glycated haemoglobin; SGLT2, sodium–glucose co-transporter 2 Rajasekeran H, et al. *Kidney Int* 2016;89:524–526


SGLT2 Inhibition is Associated with Increased Haematocrit and RBC Mass Which May Increase Tissue Oxygen Delivery

Pooled data from 17 randomised trials in patients with Type 2 diabetes¹ Increased red blood cell mass (~6%) was observed following treatment with dapagliflozin, which may indicate stimulation of erythropoiesis²

CV, cardiovascular; EMPA, empagliflozin; SGLT2, sodium–glucose co-transporter 2 1. Kohler S. *Clin Ther* 2016;38:1299–1313; 2. Lambers Heerspink HJ, et al. *Diabetes Obes Metab* 2013;15:853–862

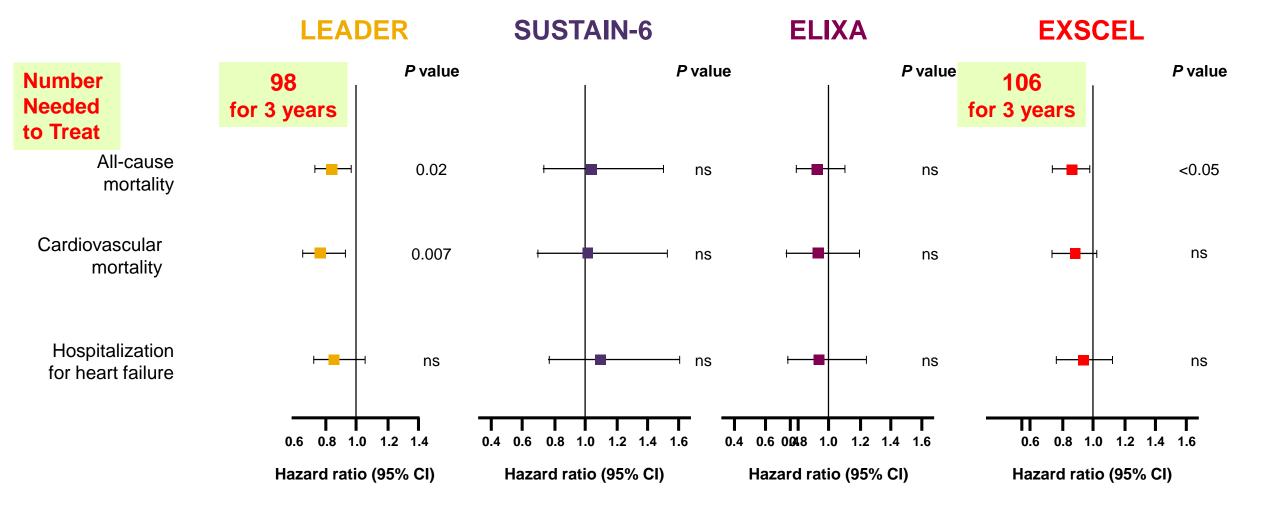
Possible Metabolic Changes with SGLT2 Inhibition



AcAc, acetoacetate; CoA,co-enzyme A; mHMG, mitochondrial 3-hydroxy-3-methylglutaryl synthase; FATP, fatty acid transport protein; β-HB, β-hydroxybutyrate; HBD, β-hydroxybutyrate dehydrogenase; MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase; SCOT, succinyl-CoA:3-oxoacid CoA transferase; TCA, tricarboxylic acid cycle; Th, thiolase Adapted from Ferrannini E, et al. *Diabetes Care* 2016;39:1108–1114

CVOT with SGLT2i and GLP-1 RA

EMPA-REG ¹	
 Established cardiovascular disease (prior myocardial infarction, coronary artery disease, stroke, unstable angina or occlusive peripheral arterial disease) 	Empagliflozin (SGLT2i) vs. usual care
LEADER ²	
 ≥50 years with pre-existing cardiovascular disease, cerebrovascular disease, vascular disease, or renal or heart failure ≥60 years with cardiovascular risk factors 	Liraglutide (GLP-1 RA) vs. usual care
SUSTAIN-6 ³	
 ≥50 years with pre-existing cardiovascular disease ≥60 years with pre-cardiovascular disease 	Semaglutide (GLP-1 RA) vs. usual care

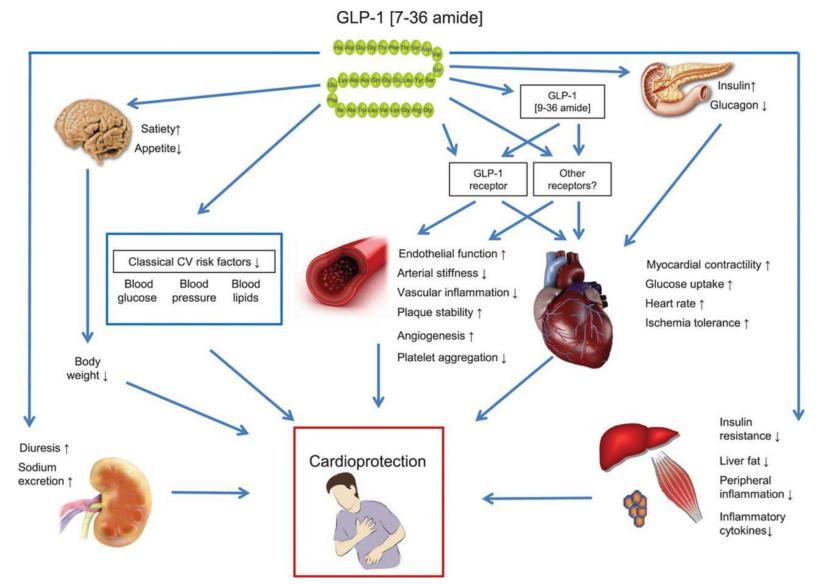

Primary Endpoint and Its Individual Components in LEADER, SUSTAIN-6, ELIXA and EXSCEL

CI, confidence interval; MACE, major adverse cardiovascular event; ns, not significant.

Adapted from Pfeffer MA, et al. N Engl J Med 2015;373:2247–2257; Marso SP, et al., N Engl J Med 2016;375:311-22; Marso SP, et al., N Engl J Med 2016 375:1834-1844; Holman RR et al., N Engl J Med, in press.

All-Cause Mortality and Hospitalization for Heart Failure in LEADER, SUSTAIN-6, ELIXA and EXSCEL

CI, confidence interval; MACE, major adverse cardiovascular event; NNT, number needed to treat; ns, not significant.

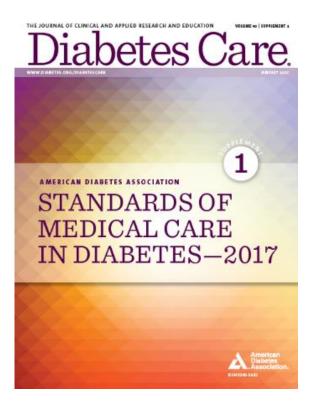

Adapted from Pfeffer MA, et al. N Engl J Med 2015;373:2247–2257; Marso SP, et al., N Engl J Med 2016;375:311-22; Marso SP, et al., N Engl J Med 2016 375:1834-1844; Holman RR et al., N Engl J Med, in press.

Characteristics and Outcomes of CV Outcome Studies of More Intensive Glucose Lowering

Study	N	Follow-up (yr)	Age (yr)	Diabetes duration (yr)	CVD history (%)	HbA _{1c} (%) difference between arms	Primary endpoint	Primary endpoint HR (95% CI)	All-cause mortality HR (95% CI)
ACCORD	10,251	3.5	62	10	35	1.1	MACE	0.90 (0.78-1.04)	1.22 (1.01-1.46)
ADVANCE	11,140	5.0	66	8	32	0.8	MACE	0.94 (0.84-1.06)	0.93 (0.83-1.06)
VADT	1,791	5.6	60	12	40	1.5	MACE + HF, vascular surgery new, ischemic amputation	0.88 , (0.74-1.05)	1.07 (0.81-1.42)
UKPDS	3,867	10	54	0	2	0.9	MI	0.84 (0.71-1.00)	0.94 (0.80-1.10)
LEADER	9,340	3.8	64	13	81	0.4	MACE	0.87 (0.78–0.97)	0.85 (0.74–0.97)
EXSCEL	14,752	3.2	63	12	73.1	0.53	MACE	0.91 (0.83-1.00)	0.86 (0.77-0.97)

CVD, cardiovascular disease; HR, hazard ratio, CI, confidence intervals; MACE, CV-death + non-fatal MI or stroke; MI, myocardial infarction; HF, heart failure. Adapted from Giorgino F. et al., *Diabetes Care* 39 Suppl 2:S187-95, 2016.

Mechanisms Mediating a Beneficial Effect of GLP-1R Activation on Cardioprotection


Adapted from Nauck MA, et al., *Circulation* 2017;136:849-870

Effects of GLP-1 or GLP-1 Receptor Agonists in Human Studies, with Potential Impact on Cardiovascular Function

Effect	GLP-1 [7-36 amide or 7-37]	Liraglutide	Exenatide
Cardioprotection against ischemia	↑ LVEF; ↑ regional wall motility	preserved LVEF after PCI/NSTEMI	↑ salvage index after STEMI; ↓ infarct size
Angiogenesis, ECs Proliferation CPCs survival	New vessel formation from ECs; ↓ CPCs apoptosis by oxidative stress	Not reported	Proliferation of coronary artery ECs; ↓ CPCs apoptosis by saturated fatty acids
Endothelium-dependent vasodilation (NO production)	 ↑ eNOS in HUVECs; ↑ ACh–induced vasodilation (healthy subjects and T2D with stable CAD) 	↓ TNFα-induced oxidative stress in HUVECs; ↑ eNOS; ↑ ACh–induced forearm blood flow (ns)	 ↑ eNOS in HUVECs; ↑ postprandial endothelial function
Inflammatory cytokines in mononuclear cells	↓ IL-6	$\downarrow TNF\alpha, \downarrow IL-1s, \downarrow IL-6$	\downarrow TNF α , \downarrow IL-1s, etc.
C-reactive protein	Not reported	↓ by 23%	↓ by 61%

ACh, acethylcholine; CPC, cardiac progenitor cell; EC, endothelial cell; HUVEC, human umbilical vein endothelial cell; IL, interleukin; LVEF, left ventricular ejection fraction; NOS, nitric oxide synthase; NSTEMI, non ST-elevated myocardial infarction; PCI, primary coronary intervention; T2D, type 2 diabetics; TNF, tumour necrosis factor.. Adapted from Nauck MA, et al., *Circulation* 2017;136:849-870

ADA Standards of Medical Care in Diabetes 2017

In patients with long-standing suboptimally controlled type 2 diabetes and established atherosclerotic cardiovascular disease, empagliflozin or liraglutide should be considered as they have been shown to reduce cardiovascular and all-cause mortality when added to standard care. Ongoing studies are investigating the cardiovascular benefits of other agents in these drug classes. B

Why Glucose Is the Most Important Target for CV Prevention in Diabetes

- Correction of hyperglycemia results in reduced CV outcomes if it is early/timely, sustained, and «safe» (e.g., w/o hypoglycemia)
- New drugs that target glucose metabolism (i.e., SGLT2i) greatly benefit the CV system
- Pleiotropic properties of specific anti-diabetes medications (e.g., GLP-1 RA) could mediate the observed reduction in CV outcomes and allcause death