Longitudinal changes in aortic reservoir function independently predict declining renal function among healthy individuals

Rachel Climie^{1,2}, Dean Picone², James Sharman²

¹Baker IDI Heart and Diabetes Institute, Melbourne, Australia ²Menzies Institute for Medical Research, Hobart, Australia

Haemodynamics and renal function

High blood pressure (BP) is associated with poor renal function and vice versa

Renal function may be more closely related central haemodynamics (including central BP)

 Central BP indices¹ are associated with renal function.

Reservoir-excess pressure paradigm

Physiologically plausible

- Describe age- and exercise- related changes in central BP (invasive pressure and flow velocity)^{1, 2}
- Theoretical principles supported by in vivo human study³

²Schultz et al. Hypertension 2013; 62: 175-82

³Schultz et al. ATVB 2014; 34: 1597-603

Reservoir-excess pressure paradigm

Clinically relevant

⁵Climie RE et al. Cadiovasc Diabetol 2014; 13: 143

- Cardiovascular events and mortality¹⁻⁴
- Grey matter atrophy⁵
- Exercise induced albuminuria⁶

²Hametner et al. Int J Cardiol 2013; 15: 171(1): 31-6

⁶Climie RE et al. Am J Physiol Heart Circ 2015; 308: ³Narayan et al. Hypertension 2015; 65: 629-35 ⁴Cheng et al. Int J Cardiol 2016; 215: 338-95

To our knowledge no studies have examined the **longitudinal changes in reservoir characteristics** and the association of these changes with **renal function**.

Aim and Hypothesis

AIM

To determine the association between the change in aortic reservoir characteristics and the change in renal function in healthy individuals

HYPOTHESIS

The change in aortic reservoir characteristics will be associated with the change in renal function

Flow of study participants

Powered for exercise haemodynamics¹

Exclusion criteria

A clinical history of cardiovascular disease or severe pulmonary disease

Arrhythmia

Pregnancy

1. Holland D et al, Am J Hypertens 2008, 21:1100–1106.

Study Protocol

Visit 1

Within in 10 days

Visit 2

Central blood pressure

Radial waveform calibrated with brachial cuff systolic and diastolic BP

Reservoir characteristics

Radial waveforms ensemble averaged

Reservoir pressure derived based on previous equations

Excess pressure = total measured pressure wave – reservoir pressure

Participant Characteristics (n=33)

	Baseline	Follow up	Change	P Value
Age (years)	54±9	57±9	3±0	<0.001
Body mass index (kg/m²)	25.3±3.5	25.3±3.8	-0.02±1.4	0.95
Daytime systolic BP (mmHg)	136±14	137±13	1±10	0.56
In-clinic systolic BP (mmHg)	115±9	119±13	5±11	0.017
Current smoker, n (%)	2 (6)	1 (3)	-1 (3)	0.99

Participant Characteristics (n=33)

	Baseline	Follow up	Change	P Value
Age (years)	54±9	57±9	3±0	<0.001
Body mass index (kg/m²)	25.3±3.5	25.3±3.8	-0.02±1.4	0.95
Daytime systolic BP (mmHg)	136±14	137±13	1±10	0.56
In-clinic systolic BP (mmHg)	115±9	119±13	5±11	0.017
Current smoker, n (%)	2 (6)	1 (3)	-1 (3)	0.99
Glucose (mmol/L)	4.7±0.4	5.1±0.5	0.4±0.5	<0.001
Insulin (IU/mL)	2.5±4.7	9.2±8.9	6.8±6.1	<0.001
Total cholesterol (mmol/L)	5.5±1.1	5.6±1.1	0.06±1.0	0.75

Participant Characteristics (n=33)

	Baseline	Follow up	Change	P Value
Age (years)	54±9	57±9	3±0	<0.001
Body mass index (kg/m²)	25.3±3.5	25.3±3.8	-0.02±1.4	0.95
Daytime systolic BP (mmHg)	136±14	137±13	1±10	0.56
In-clinic systolic BP (mmHg)	115±9	119±13	5±11	0.017
Current smoker, n (%)	2 (6)	1 (3)	-1 (3)	0.99
Glucose (mmol/L)	4.7±0.4	5.1±0.5	0.4±0.5	<0.001
Insulin (IU/mL)	2.5±4.7	9.2±8.9	6.8±6.1	<0.001
Total cholesterol (mmol/L)	5.5±1.1	5.6±1.1	0.06±1.0	0.75
eGFR (mL/min/1.73m ²)	107.8±4.0	98.9±3.4	-8.85±2.2	<0.001

The change in reservoir characteristics

	Baseline	Follow up	Change	P Value
Reservoir pressure integral (Pa.s)	11126±1729	11229±1555	103±1649	0.73
Excess pressure integral (Pa.s)	451±104	519±180	67±154	0.022

The change in reservoir characteristics

	Baseline	Follow up	Change	P Value
Reservoir pressure integral (Pa.s)	11126±1729	11229±1555	103±1649	0.73
Excess pressure integral (Pa.s)	451±104	519±180	67±154	0.022
Other central haemodynamics				
Central systolic BP (mmHg)	103±10	108±14	6±10	0.003
Central pulse pressure (mmHg)	37±5	42±9	5±6	<0.001
Augmented pressure (mmHg)	8±5	12±7	4±4	<0.001
Augmentation index (%)	21±11	27±11	6±7	<0.001
Aortic PWV (m/s)	6.5±1.4	7.3±1.2	0.9±1.3	0.001

Association of change in excess pressure and change in renal function

Independent of age at follow up, change in BMI and ambulatory daytime systolic BP (β =-0.03, p=0.046)

Association of change in excess pressure and change in renal function

Independent of hypertension status (ambulatory daytime systolic BP≥135/85 and/or using antihypertensives) (β =-0.03, p=0.020)

Association of change in glucose and change in excess pressure

- Independent of age at follow up, change in BMI, 24 hour daytime systolic BP (β =140.33, p=0.035).
- No significant interaction (p>0.05 for product term).
- The addition of glucose did not alter the relationship between excess pressure and eGFR but it did render it borderline significant (p=0.057).

Potential mechanism of kidney damage

Potential mechanism of kidney damage

Conclusions

- First longitudinal pilot data of reservoir characteristics
- Excess pressure is associated with a decline in renal function among healthy people over a 3 year follow up period

Larger cohort, with more detailed analysis of metabolic and haemodynamic changes is required

Thank you

Diabetes Australia Research Trust

Study participants

ARTERY Society travel grant

