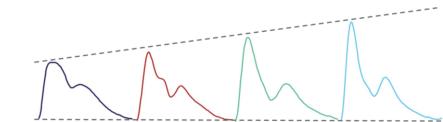
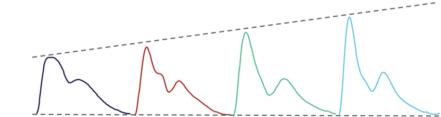
Central hemodynamics and prediction of cardiovascular events in patients with erectile dysfunction


N.Skliros, N.Ioakeimidis, D.Terentes-Printzios, C.Vlachopoulos

Cardiovascular Diseases and Sexual Health Unit, 1st Cardiology Department, Athens Medical School, Department of Urology, Hippokration Hospital

Conflict of interests:

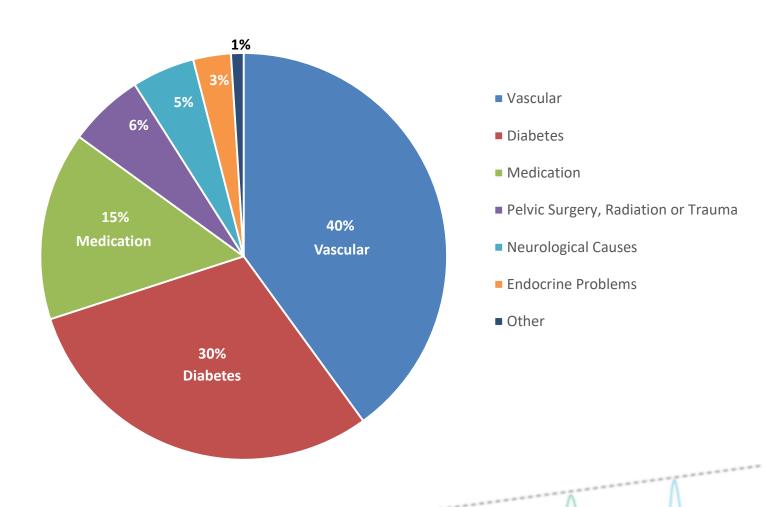
The authors declare <u>no</u> conflict of interest


- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

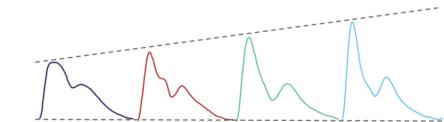
Erectile Dysfunction (ED)

How prevalent is it?

- 1 in 5 American men
- Over 30 million American men
- Over 150 million men worldwide
- Causes: 90% physical, 10% psychogenic


Erectile Dysfunction (previously known as Impotence)

- ED affects about 10% of men aged 40-70 and prevalence increases with age
- ED is common in patients with subclinical or symptomatic coronary artery disease (CAD)
- ED is considered an early manifestation of a generalized vascular disease and predicts all-cause mortality and cardiovascular (CV) events including CAD, stroke and peripheral artery disease (PAD)


Main causes of ED

Cause	Etiology
Inflammatory	Prostatitis, urethritis
M echanical	Peyronie's Disease, chordee
P sychological	Depression, performance anxiety, stress, relationship difficulties
• cclusive vascular	Arterial: Hypertension, smoking, hyperlipidemia, DM., peripheral vascular disease Venous: venous occlusion due to anatomical or degenerative changes
T rauma	Pelvic fracture, SC injection, penile trauma
E ndocrine	Hypogonadism, hyperprolactinemia, hypo + hyperthyroidism
Neurologic	Parkinson's, multiple sclerosis, spina bifida, pelvic surgery, peripheral neuropathy
Chemical	Anti-HTN, anti-arrhythmics, antidepressants, anxiolytics, anti- androgens, anticonvulsants, alcohol, marijuana, anti-Parkinsonic drugs, LHRH analogues
E xtra factors	Prostatectomy, old age, CRF, cirrhosis

Main causes of ED

- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

Central hemodynamics

Novel biomarkers

- Arterial stiffness
 - Carotid-femoral pulse wave velocity-cfPWV (IIa/A)
 - Brachial-ankle pulse wave velocity-baPWV (IIb/B)
- Central haemodynamics/wave reflections (IIb/B)
 - Central (aortic) pressure
 - Augmentation pressure (measure of the enhancement of central aortic pressure by the reflected pulse wave)
 - Augmentation Index-Alx (augmentation pressure to PP ratio)

Recommendation for clinical use

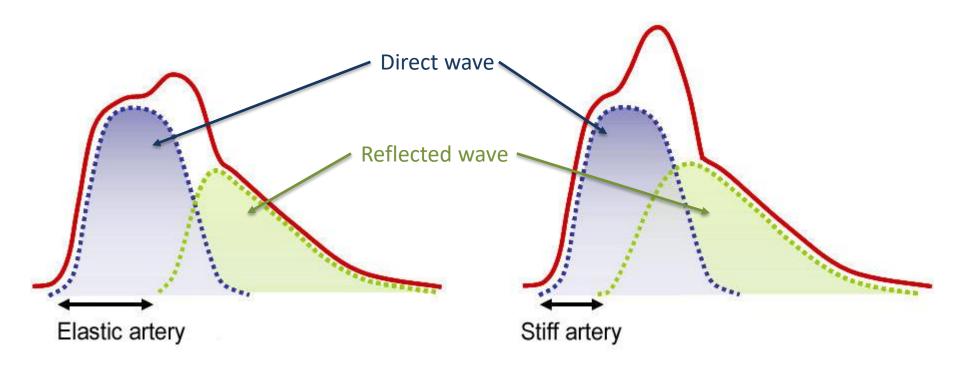
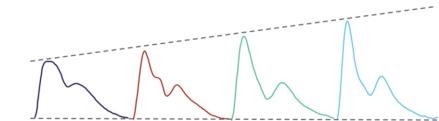

The role of vascular biomarkers for primary and secondary prevention

Table 5
Usefulness of vascular biomarkers for primary and secondary CVD prevention.

	Recommendation	Level of evidence	Comments
Carotid ultrasonography	Ila	Α	Moderate usefulness for risk stratification. Concomitant identification of plaque presence.
Ankle-brachial index	IIa	A	Useful for risk stratification, especially women.
Arterial stiffness			
Carotid-femoral pulse wave velocity	<u>Ila</u>	Α	Useful for risk stratification.
Brachial-ankle pulse wave velocity	IIb	В	
Central haemodynamics/Wave reflections	IIb	В	
Flow mediated dilatation	III	В	Requires skilled, trained operator. Reactive hyperaemia is stressful. Methodological problems are not resolved. Added value is not proven.
Endothelial peripheral arterial tonometry	Ш	С	Reactive hyperaemia is stressful. Added value is not proven.
Circulating biomarkers related to vascular wall	biology		
High sensitivity C- reactive protein	IIb	В	


Vlachopoulos et al. Atherosclerosis 2015, European Society of Cardiology - Position Paper

Central pressures and Augmentation index

- Central pressures do not correspond to brachial pressures due to pressure pulse amplification of a varying degree when moving from the aorta to the periphery
- Central (aortic, carotid) pressures are pathophysiologically more relevant than peripheral pressures for the pathogenesis of cardiovascular disease

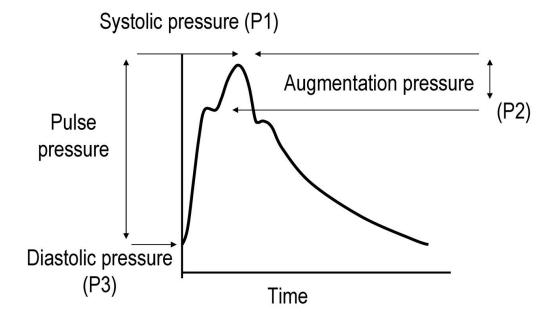
- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

Study Protocol

Background

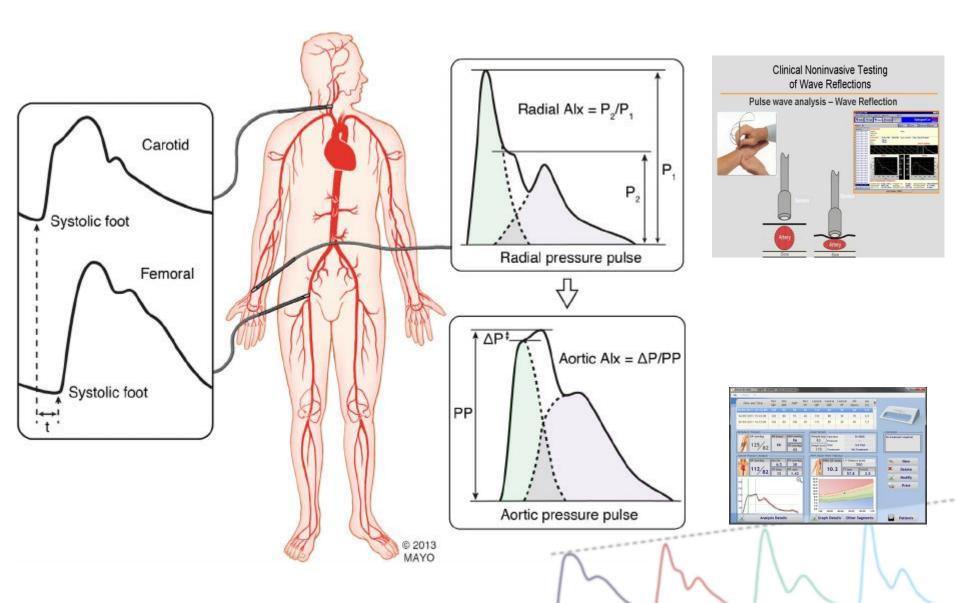
- Established and novel biomarkers are particularly useful in primary or secondary prevention, and since ED is primarily a vascular disease, arterial biomarkers are particularly appealing
- Central (aortic) blood pressures (BP) more accurately reflect loading conditions of vital organs and thus, should better related to target organ damage and cardiovascular events than peripheral pressures.
- The purpose of the present study was to investigate whether central hemodynamics predict major adverse cardiovascular events (MACEs) in patients with erectile dysfunction (ED) beyond traditional risk factors.

Study Protocol

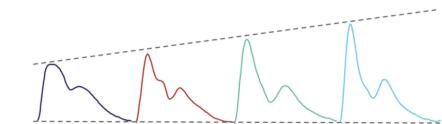


398 ED pts (mean age 56 yrs)

Sexual Health Inventory for Men (SHIM) Questionnaire


- **1.** How do you rate your confidence that you could get and keep an erection?
- **2.** When you had erections with sexual stimulation, how often were your erections hard enough for penetration (entering your partner)?
- 3. During sexual intercourse, how often were you able to maintain your erection after you had penetrated (entered) your partner?
- **4.** During sexual intercourse how difficult was it to maintain your erection to completion of intercourse?
- **5.** When you attempted sexual intercourse, how often was it satisfactory for you?

ASSESMENT OF ED



Augmentation Index (Alx) was defined as augmented pressure (AP=maximum systolic pressure - pressure at the inflection point) divided by pulse pressure and expressed as percentage $\left(\frac{AP}{PP}\%\right)$. Higher values of Alx indicate increased arterial stiffening and wave reflections and vice-versa.

Study Protocol

- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

- Differences in normal variables: Student t-test
- Differences in non-normal variables: Mann-Whitney U test
- Frequency comparison: *Pearson chi-square test*
- Free of MACE survival among tertiles estimation: Kaplan-Meier curves and Mantel log-rank test for comparison
- Central pressures: relative risks (RRs) calculation per 10-mmHg difference & risk estimates were adjusted for age and risk factors
- Alx: RRs calculation per absolute 10% difference & risk estimates were adjusted for peripheral pressure
- Subject reclassification: further assessment with net reclassification improvement (NRI), so that case subjects will not be categorized as higher-risk and control subjects will not be categorized as lower-risk, compared to a base model

- The mean follow-up time was 6.5 years (range 1-11), during which 29 (7.2%) subjects developed MACE (24 nonfatal, 5 fatal)
- Of those with CAD events (n=20), 2 were fatal, 4 were myocardial infarction with survival beyond one day and 14 were documented angina pectoris or coronary revascularization
- Other MACE events were cerebrovascular events (n=6), and new onset of peripheral arterial disease (n=3, 1 fatal)

Baseline clinical characteristics of patients with a MACE and subjects without MACE

	MACE	No MACE	*P value
	(n=29)	(n=369)	
Age (years)	61±6	55±10	<0.001
BMI (Kgr/m²)	27.8±2.7	28.7±4.2	0.23
Total cholesterol, mg/dl	209±34	207±36	0.85
HDL cholesterol, mg/dl	44±8	45±9	0.86
Triglycerides, mg/dl	111 (75-136)	109 (80-131)	0.98
Glucose, mg/dl	107 (86–117)	105 (84–115)	0.54
hsCRP, mg/l	1.9 (1.5-2.4)	1.7 (1.3-2.0)	0.43
Total testosterone, ng/ml	4.0 ±0.8	4.5±1.2	<0.05
Hypertension, n (%)	24 (83)	170 (48)	<0.001
Hypercholesterolemia, n (%)	16 (55)	212(60)	0.39
Diabetes, n (%)	6 (21)	61(17)	0.37
Smoking, n (%)	16 (55)	187 (53)	0.48
Drug Therapy, n (%)			
Antihypertenive therapy	20 (69)	156 (42)	0.005
Statins	11 (38)	114 (31)	0.47
IIEF-5	12.6±3	13.2±4	0.46
†PSV (cm/s)	29±10	33±9	0.03

BMI: body-mass index; BP: blood pressure; CV: cardiovascular; ED: erectile dysfunction; FRS: Framingham Risk Score; HDL: high density lipoprotein; hsCRP: high sensitivity C-reactive protein; MACE: major adverce cardiovascular events; PSV: peak systolic velocity

Categorical variables are presented as absolute (relative) frequencies; continuous variables, as mean ±SD or median (interquartile range)

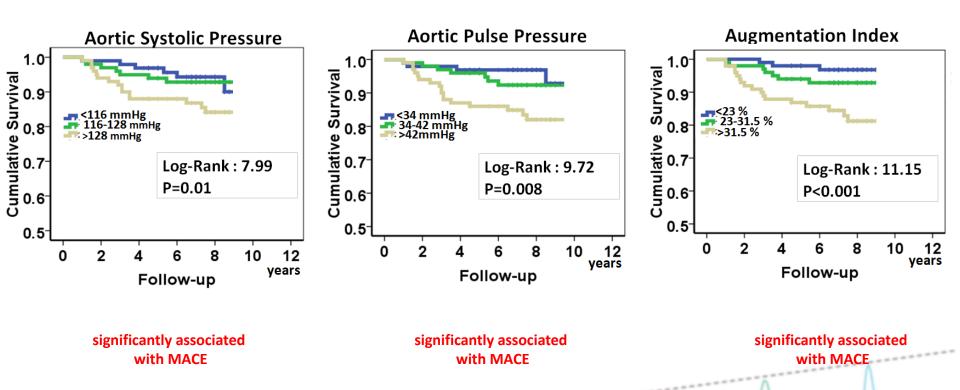
†PSV was measured in 278 ED patietns (25 with MACE and 253 w/o MACE)

^{*}P value: refers to differences between patients with a MACE and subjects without MACE

Peripheral and Central BP characteristics of patients with a MACE and subjects without MACE

	MACE	No MACE	*P value
	(n=29)	(n=369)	
Heart rate (bpm)	69±8	70±7	0.54
Brachial Systolic BP, mmHg	140±17	131±17	0.008
Brachial Diastolic BP, mmHg	84±7	82±8	0.25
Brachial Pulse Pressure, mmHg	56±13	49±13	<0.001
Mean Pressure, mmHg	103±10	100±10	0.27
Aortic Systolic BP, mmHg	130±16	121±16	0.006
Aortic Diastolic BP, mmHg	84±7	83±8	0.57
Aortic Pulse Pressure, mmHg	56±13	48±13	<0.001
Augmentation Index (%)	30±10	24±10	<0.001

BP: blood pressure; MACE: major adverse cardiovascular events;


Continuous variables, as mean ±SD

^{*}P value: refers to differences between patients with a MACE and subjects without MACE

Outcome and prognostic impact of central hemodynamics

 The whole population was divided into tertiles according to the brachial and aortic BP level, Alx and AP.

Kaplan-Meier curves for MACE by tertile group of Ao systolic / Ao pulse pressure and Alx

Adjusted HRs for MACEs

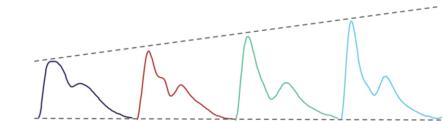
(for age, cholesterol, smoking history & additionaly for systolic pressure for Alx)

	Parameters	HR (95% CI)	Significance (P)
	Aortic Systolic BP	1.062 (95% CI 1.016–1.117)	0.047
10mmHg difference	Aortic Diastolic BP	1.012 (95% CI 0.970–1.050)	0.54
	Aortic PP	1.117 (95% CI 1.038–1.153)	0.025
10% absolute increase	Brachial Systolic BP	1.034 (95% CI 1.004-1.106	0.20
	Brachial PP	1.072 (95% CI 1.024–1.138)	0.036
	Alx	1.191 (95% CI 1.056–1.372)	0.01

Alx: augmentation index; BP: blood pressure; PP: pulse pressure

1 st tertile	2nd tertile	3rd tertile
<116 mmHg	116-128 mmHg	>128 mmHg
1 (REF)	1.14 (0.35 -3.40)	+2.55 (0.95-6.29)
1 (REF)	0.95 (0.27-2.78)	1.87 (0.70-4.79)
	<116 mmHg 1 (REF)	1 (REF) 1.14 (0.35 -3.40)

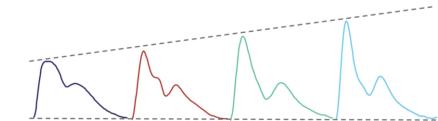
MACE by tertiles of Ao Pulse Pressure


	1 st tertile	2nd tertile	3rd tertile
	<34 mmHg	34-42 mmHg	>42 mmHg
HR (95% CI) for MACE			_
Unadjusted	1 (REF)	1.49 (0.43 -5.30)	¶ 4.04 (1.36-10.5)
Adjusted for age, cholesterol, smoking	1 (REF)	1.62 (0.46-5.73)	+2.76 (0.90-8.56)

 $[\]P$ P<0.01, † P<0.05 for 3^{rd} tertile vs 1^{st} tertile

MACE by tertiles of Augmentation Index			
	1 st tertile	2nd tertile	3rd tertile
	<23 %	23-31.5 %	>31.5 %
HR (95% CI) for MACE			
Unadjusted	1 (REF)	1.69 (0.37-4.96)	¶ 3.95 (1.47-12.5)
Adjusted for age, SP, heart rate, cholesterol, smoking	1 (REF)	1.82 (0.65-4.98)	+2.84 (0.86-7.40)
\P P<0.01, †P<0.05 for 3 rd tertile vs 1 st tertile			

Alx: augmentation index; SP: systolic pressure; MACE: major adverse cardiovascular events


- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

Discussion

- Clinical implications
- Central hemodynamics and CV risk
- Mechanisms
- Limitations

- Erectile dysfunction
- Central hemodynamics
- Study protocol
- Statistical analysis & results
- Discussion
- Conclusions

Conclusions

- Aortic systolic and pulse pressure and aortic augmentation index independently of age and risk factors predicted MACEs
- The adjusted relationship between Alx/aortic pulse pressure and incident MACEs was consistent
- Central pressures and wave reflection indices fulfill important criteria for a biomarker to enter the clinical arena as regards investigation of ED patients without known CVD

Thank you for your attention!

Tak for din opmærksomhed!

Σας ευχαριστώ για την προσοχή σας!