

How does obesity influence arterial stiffness in asymptomatic adults ?

Béla Benczúr

the former President of HSAS

Hetényi Géza' County Hospital, Dept. of Cardiology, Szolnok, HUNGARY

Faculty Disclosure of interests have nothing to disclose any conflicts of interests

The global epidemic of overweight and obesity - "globesity" is rapidly becoming a major public health problem

All the people of the world is fasting!

One part is on diet,

the other is starving...

I. Kiss, G. Dankovics, I. Barna, E. Kekes, T. Daiki: The comprehensive health screening programme 2010-2020.

EUROPE'S OBESITY LEAGUE

Prevalence of obesity among population aged 15 and over

🔵 Hungary	28.5%	6	Finland	15.8%
🙌 United Kingdom	24.7%	g	Cyprus	15.6 %
🌙 Ireland	23.0%		Portugal	15.4%
Luxembourg	23.0%		Germany	14.7%
🎲 Malta	22.9 %		France	14.5%
🥪 Czech Republic	21.0%	0	Belgium	13.8%
🕒 Greece	19.6%		Denmark	13.4%
🦲 Estonia	19.0%		Austria	12.4%
🎱 Slovenia	18.3%		Netherlands	12.0%
🔵 Latvia	16.9%		Sweden	11.8%
🥑 Slovakia	16.9%		Bulgaria	11.5%
鱼 Spain	16.6%		Italy	10.4%
🗕 Poland	15.8%	: ()	Romania	7.9%

Source: OECD Health At A Glance Europe 2014. Data collected in 2012

Highest Cardiovascular Disease Death Rates

Here's a look at the top 10 countries with the highest death rates for heart disease, stroke and high blood pressure per 100,000 men and women, ages 35 to 74.

Sources: World Health Organization, National Center for Health Statistics and National Heart, Lung, and Blood Institute

Predictive value of arterial stiffness (aoPWV) 17 longitudinal studies, 15.887 pts, 7.7 ys follow-up

Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness

A Systematic Review and Meta-Analysis

Charalambos Vlachopoulos, MD, Konstantinos Aznaouridis, MD, Christodoulos Stefanadis, MD Athens, Greece

Objectives	The purpose of this study was to calculate robust quantitative estimates of the predictive value of aortic pulse wave velocity (PWV) for future cardiovascular (CV) events and all-cause mortality by meta-analyses of longitudi- nal studies.				
Background	Arterial stiffness is increasingly recognized as a surrogate end point for CV disease.				
Methods	We performed a meta-analysis of 17 longitudinal studies that evaluated aortic PWV and followed up 15,877 subjects for a mean of 7.7 years.				
Results	The pooled relative risk (RR) of clinical events increased in a stepwise, linear-like fashion from the first to the third tertile of aortic PWV. The pooled RRs of total CV events, CV mortality, and all-cause mortality were 2.26 (95% confidence interval: 1.89 to 2.70, 14 studies), 2.02 (95% confidence interval: 1.68 to 2.42, 10 studies), and 1.90 (95% confidence interval: 1.61 to 2.24, 11 studies), respectively, for high versus low aortic PWV subjects. For total CV events and CV mortality, the RR was significantly higher in high baseline risk groups (coronary artery disease, renal disease, hypertension) compared with low-risk subjects (general population). An increase in aortic PWV by 1 m/s corresponded to an age-, sex-, and risk factor-adjusted risk increase of 14%, 15%, and 15% in total CV events, CV mortality, and all-cause mortality, respectively. An increase in aortic PWV by 1 SD was associated with respective increases of 47%, 47%, and 42%.				
Conclusions	Aortic stiffness expressed as aortic PWV is a strong predictor of future CV events and all-cause mortality. The predictive ability of arterial stiffness is higher in subjects with a higher baseline CV risk. (J Am Coll Cardiol 2010;55:1318–27) © 2010 by the American College of Cardiology Foundation				

Obesity correlates with vascular stiffness

Nordstrand et al. BMC Cardiovascular Disorders 2011, 11.7 http://www.biomedcentral.com/1471-2261/11/7

Cardiovascular Disorders

Open Access

RESEARCH ARTICLE

Rachel P. Wi

Measures

Abstract-Obesity 1 vascular systems to assess the asso African American aortic pulse-wave

Higher bo

Bade

Results were cons and African Amer and the prevalence cohort ages. (Hyp The relationship between various measures of obesity and arterial stiffness in morbidly obese patients

PWV was positively correlated with WC, W/H ratio, BMI and visceral fat area in obese females Abs

carotid femoral pulse wave velocity (PWV) is an independent predictor of card We aimed to investigate how various measures of body composition affect an Methods: This is an analysis of cross-sectional baseline data from a controlled arterial stiffness after either surgery or lifestyle intervention in a population of applanation tonometry (Millar®, Sphygmocor®) was used to measure pulse w PWV is a direct measure of arterial stiffness and is considered to be the gold Body Composition Analyzer was used for bioelectrical impedance analysis (B independent samples t-test, chi-square tests, Fisher's exact test and multiple statistical internerin RP 27 al.

Results: A total of 133 patients (79 women), with a mean (SD) age of 43 (1) cars were included in the study.

changes in nts. High-fidelity arotid femoral The Inbody 720 correlation. ssion analyses were used as

Men had a significantly higher prevalence of obesity related comorbidities and significantly higher PWV, 9.1 (2.0) m/s vs. 8.1 (1.8) m/s, p = 0.003, than women. In the female group, PWV was positively correlated with WC, WHtR, BMI and visceral fat area. In the male group, PWV was negatively correlated with BMI. Multiple linear regression analysis showed that increasing BMI, WC, WHtR, visceral fat area and fat mass were independently associated with higher PWV in women, but not in men, after adjustment for age, hypertension and type 2 diabetes.

Conclusion: Most measures of general and abdominal obesity were predictors of arterial stiffness in female morbidly obese patients.

Trial registration: ClinicalTrials.gov Identifier NCT00626964

Nordstrand et al. BMC Cardiovascular Disorders 2011, 11:7.

Subjects and methods

• Aim of the study: to collect eligible amount of measurements derived from a huge population of (apparently) healthy individuals with wide range of age to create a database in order to define reference values of pulse wave velocity

 The purpose of this stud was to assess the association between arterial stiffness and obesity

 AoPWV and cSBP were assessed with an oscillometric device (TensioMed Arteriograph) in 9073 normotensive adults without any CV disease and not treated for hypertension, diabetes or dyslipidemia

• 3749 men (41%) and 5327 women (59%) were included into the analysis (mean age: 48.2 \pm 14,1 ys)

 Individuals were categorized according to their BMI-values to determine the correlation between BMI and stiffness-parameters (PWV, Aix, cSBP)

Statistical analysis was carried out with IBM SPSS 20 statistical software

Characteristics of the whole population (n=9073)

Group Statistics										
	Sex (0-male: 1-female)	N	Mean	Std. Deviation	Std. Error Mean					
Age (years)	0	3749	47,64	15,087	,246					
	1	5327	48,67	13,462	,184					
BMI	0	3749	26,5505	3,94999	,06451					
	1	5327	25,0558	4,34171	,05949					
Sys [mmHg]	0	3749	125,96	9,399	,153					
	1	5327	123,21	10,378	,142					
Dias (mmHg)	0	3749	76,21	7,652	,125					
	1	5327	74,67	7,740	,106					
HR [1/min]	0	3749	68,67	10,699	,175					
	1	5327	71,78	10,262	,141					
MAP (mmHg)	0	3749	92,80	7,208	,118					
	1	5327	90,85	7,857	,108					
PP [mmHg]	0	3749	49,75	8,653	,141					
	1	5327	48,54	7,995	,110					
AixBra	0	3749	-32,8568	26,77543	,43730					
	1	5327	-13,2200	28,04689	,38428					
RT [ms]	0	3748	136,21	31,244	,510					
	1	5827	115,61	29,441	,403					
PVVVao (m/s)	0	3749	8,5495	2,25685	,03686					
	1	5327	9,4486	2,56010	,03508					
SBPao (mmHg)	0	3749	115,9324	9,81734	,16034					
	1	5327	116,8873	11,84381	,16227					

👰 / male: 0

Distribution of population according to BMI-categories

(n=9073)

Parameters of vascular function according to BMIcategories

(n=9073)

		*			Rep	ort ★			*		*		*	
Obesity (1-normal; 2-	overweight; 3-obese)	Sys [mmHg]	Dias (mmHg)	HR [1/min]	MAP [mmHg]		PP [mmHg]	AixAo	RT [ms]	PWVao (m/s)		SBPao [mmHg]		cPP
1	Mean	122,25	73,56	71,16		89,79	48,68 19,056		128,20	8,6474 1		114,0788	40,5180	
normal	N	4374	4374	4374		4374	4374	4374	4374		4374		4374	4374
normai	Std. Deviation	10,345	7,947	10,837		7,873	8,466	9,99031	32,158		2,41515		11,42460	7,77413
2	Mean	125,75	76,60	69,80		92,99	49,15	20,4992	121,50		9,3278		118,2544	41,6579
overweight		3346	3346	3346		3346	3346	3346	3346		3346		3346	3346
over weigi	Std. Deviation	9,579	7,305	10,172		7,161	8,192	9,15022	31,007		2,43210		10,44712	8,06914
3	Mean	127,66	77,76	70,11		94,40	49,90	20,3185	117,40		9,8499		119,9289	42,1713
ohese	N	1353	1353	1353		1353	1353	1353	1353		1353		1353	1353
UNCSC	Std. Deviation	8,839	6,775	10,445		6,538	7,905	8,88332	31,157		2,52888		9,51810	7,75668
Total	Mean	124,34	75,31	70,50		91,65	49,04	19,7769	124,12		9,0777		116,4911	41,1849
	N	9073	9073	9073		9073	9073	9073	9073		9073		9073	9073
	Std. Deviation	10,077	7,742	10,556		7,657	8,294	9,55133	31,858		2,47932		11,06231	7,90879

* p < 0.05

Higher BMI was correlated with higher PWV (n=9073)

Correlation between PWV and obesity (n=9073)

Multiple regression analysis: BMI has shown the second strongest correlation with PWVao after age

Coefficients ^a

		Unstandardized Coefficients		Standardized Coefficients			95,0% Confider	ice Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	,089	,303		,294	,769	-,505	,684
	BMI	,133	,010	,229	13,842	,000	,115	,152
	Weight [kg]	-,042	,003	-,252	-15,768	,000	-,047	-,037
	Age [years]	,085	,002	,484	50,557	,000	,081	,088
	Sys [mmHg]	,029	,002	,120	13,154	,000	,025	,034
	HR [1/min]	,013	,002	,055	6,140	,000	,009	,017

a. Dependent Variable: PWVao [m/s]

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,527ª	,278	,278	2,10693
2	,540 ^b	,291	,291	2,08702
3	,545°	,297	,297	2,07844
4	,560 ^d	,313	,313	2,05510
5	,562°	,316	,316	2,05095

a. Predictors: (Constant), Age [years]

b. Predictors: (Constant), Age [years], Sys [mmHg]

- c. Predictors: (Constant), Age [years], Sys [mmHg], Weight [kg]
- d. Predictors: (Constant), Age [years], Sys [mmHg], Weight [kg], BMI
- e. Predictors: (Constant), Age [years], Sys [mmHg], Weight [kg], BMI, HR [1/min]

Increase of PWV according to age and BMI (n=9073)

Wildmann et al: Obesity and arterial stiffness. Hypertension. 2003;42:468-473.

Potential links between obesity and arterial stiffness

- Fat gain particularly which is distributed in central (abdominal) area is an important cause of cardiovascular disease
- Obesity might also exert adverse affects on the vascular system by increasing arterial stiffness, thus predisposing the individual to hypertension and premature aging of the vascular system
- Central (dysfunctional) fat produces adipocytokines in excessive amount

Conclusions and limitations

- Age is the strongest predictor of the several factors contributing to PWV but obesity can play also an important role
- Increased body weight coincides with significantly higher PWV
- It would be more beneficial to investigate those parameters which better characterize overweight and central obesity (waist circumference, waist-to-hip-ratio)
 - Long-term follow-up studies are needed to better understand the link between obesity and vascular stiffness
- Effect of weight-control/loss on arterial stiffness is poorly investigated (probably improves??)

Thank you for your attention!

