Large and small artery crosstalk in patients with type 2 diabetes

Jonathan Baier1,2, Søren Tang Knudsen1,2, Line Petersen1,2, Kristian Funck1,2, Per Løgstrup1,2, Toke Bek1,2, Esben Laugesen1,2
1Aarhus University, 2Aarhus University Hospital

Introduction
Large artery stiffness is associated with microvascular disease in patients with type 2 diabetes. Thus crosstalk between large and small blood vessels has been suggested to partake in the pathogenesis of microvascular complications to diabetes. Indeed, vasoreactivity in the retina has been shown to be attenuated in patients with type 2 diabetes and to be associated with the degree of pathological changes in the retina’s blood supply.

The mechanism behind this possible crosstalk is poorly understood though. In this study we examine a group of well regulated type 2 diabetics in an attempt to elucidate some of the early perturbations in the autoregulation of the retina’s blood supply.

Hypothesis
Large artery stiffness and endothelial dysfunction is associated with dysfunction of the retinal vessels in type 2 diabetics.

Aim
To assess whether large artery stiffness and endothelial dysfunction is associated with perturbations in the retinal vessel function in patients with type 2 diabetes.

Method
16 type 2 diabetics and 14 controls have been recruited so far. 20+20 scheduled.

Arterial stiffness was assessed by carotid-femoral PWV using the SphygmoCor device. Endothelial function was assessed using EndoPAT.

Figure 1. Background for measurement of cPWV. Laurenz, S., et al. (2006). Eur Heart J 27(21): 2588-2605

Results
Retinal blood regulation was examined using the Retinal Vessel Analyzer under three conditions:

i. Isometric exercise, that raises systemic blood pressure
ii. Flicker light stimulation, that raises the metabolic demand of the retina
iii. Combination of the two abovementioned interventions

Table 1. Baseline characteristics.

<table>
<thead>
<tr>
<th></th>
<th>T2D (n=16)</th>
<th>Controls (n=16)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>63.8±10.4</td>
<td>61.8±14.3</td>
<td>0.12</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>7/16</td>
<td>9/16</td>
<td>0.73</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.0±5.2</td>
<td>25.0±3.2</td>
<td>0.03</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>132±18.0</td>
<td>126±12.9</td>
<td>0.01</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>84±14.0</td>
<td>80±10.0</td>
<td>0.07</td>
</tr>
<tr>
<td>AR PWV (cm/sec)</td>
<td>13.7±1.2</td>
<td>12.4±1.0</td>
<td>0.04</td>
</tr>
<tr>
<td>Endothelial function</td>
<td>63±7</td>
<td>58±6</td>
<td>0.27</td>
</tr>
<tr>
<td>Vascular resistance</td>
<td>138±20</td>
<td>154±20</td>
<td>0.03</td>
</tr>
<tr>
<td>Flow sensitivity</td>
<td>3.8±0.3</td>
<td>3.5±0.4</td>
<td>0.27</td>
</tr>
<tr>
<td>Stroke volume</td>
<td>35±10.1</td>
<td>34±9.9</td>
<td>0.27</td>
</tr>
</tbody>
</table>

There was no significant difference among the groups in vasoreactivity to any of the three interventions. Nor among the groups as to change in diameter during interventions or any association between diameter change and cPWV or LnRHI.

Figure 2. Still from the Retinal Vessel Analysis

Conclusions
Type 2 diabetics had significantly higher measures of arterial stiffness than controls. There was, however, no difference among the groups regarding endothelial function or vasoreactivity. There was no association between vasoreactivity and arterial stiffness or endothelial function in the two groups. We did not find any evidence of crosstalk between large and small arteries in this group of type 2 diabetics.

Figure 3. 0: Controls. 1: T2DM

Figure 4. 0: Controls. 1: T2DM

Figure 5. Scatter plots of data from the retinal vessel analysis. Diameter change in percentage and mean cPWV. Top: Arteriole (p=0.33). Bottom: Venule (p=0.50).

Contact
Jonathan Baier
Dept. of Endocrinology and Internal Medicine
Aarhus University Hospital
Email: baier@clin.au.dk
Phone: 0045 42647797